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Abstract

Learning Data Driven Representations from Large Collections of Multidimensional

Patterns with Minimal Supervision

by

Parvez Ahammad

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Traditionally, taking experimental measurements of a physical or biological phe-

nomenon was an expensive, laborious and very slow process. However, significant

advances in device technologies and computational techniques have sharply reduced

the costs of data collection. Capturing thousands of images of developing biological

organisms, or recording enormous amounts of video footage from a network of cameras

monitoring an observation space, or obtaining a large number of neural measurements

of brain signal patterns via non-invasive devices are some of the examples of such data

proliferation. Analyzing such large volumes of multi-dimensional data through expert

supervision is neither scalable nor cost-effective. In this context, there is a need for

systems that complement the expert user by learning meaningful and compact repre-

sentations from large collections of multidimensional data (images, videos etc.) with

minimal supervision. In this dissertation, we present minimally supervised solutions

to two such scenarios generally encountered.

The first scenario arises when a large set of labeled noisy observations are available

from a given class (or phenotype) with an unknown generative model. An interesting

challenge here is to estimate the underlying generative model and the distribution
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over the distortion parameters that map the observed examples to the generative

model. For example, this is the scenario encountered while attempting to construct

high-throughput data-driven spatial gene expression atlases from many thousands of

noisy images of Drosophila melanogaster imaginal discs. We discuss improvements

to an existing information theoretic approach for joint pattern alignment (JPA) in

order to address such high-throughput scenarios. Along with the discussion of the

assumptions, advantages and limitations of our approach (Chapter 2), we show how

this framework can be applied to a variety of applications (Chapters 3, 4, 5).

The second scenario arises when there are observations available from multiple

classes (phenotypes) without any labels. An interesting challenge here is to estimate a

data driven organizational hierarchy that facilitates efficient retrieval and easy brows-

ing of the observations. For example, this is the scenario encountered while organizing

large collections of unlabeled activity videos based on the spatio-temporal patterns,

such as actions of human beings, embedded in the videos. We show how some insights

from computer vision and data-compression can be efficiently leveraged to provide a

high-speed and robust solution to the problem of content-based hierarchy estimation

(based on action similarity) for large video collections with minimal user supervision

(Chapter 6). We demonstrate the usefulness of our approach on a benchmark dataset

of human action videos.

Professor S. Shankar Sastry, Chair Date
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Chapter 1

Overview

1.1 Motivation

The search for patterns in nature and the man-made world is an immensely interest-

ing pursuit. If a priori knowledge is provided about the pattern that one is searching

for, the task becomes that of aligning the prior with the observed patterns, and choos-

ing one that satisfies the expectations. Approaches that follow this philosophy are

denoted as the model-based approaches. In day-to-day life, there are many instances

when we learn about the world around us even without having an a priori model.

Given the proliferation of data in the modern world, there has been a renewed sci-

entific interest in finding ways to automatically learn the underlying patterns simply

by observing many examples.

One such scenario is illustrated by thinking about the task of teaching a child

about some exotic fruit (say, a mango). This can be accomplished by showing a few

examples of how a mango looks like: either by taking the child to a mango expo or

by doing an image search on a reliable search engine and walking the child through

the search results (see Figure 1.1). During the process of observing these examples,
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Chapter 1. Overview

somehow the child learns the implicit notion of what an innate representation of

mango is, while also learning the range of variations that a mango can have. With

enough examples, the child may also learn how to recognize a new instance of a

mango, and reject an instance of a fruit that is not a mango. It is worthwhile to

consider this scenario, and ask ourselves if a machine can be taught to do the same

task as the child learning the compact representation of the space of mangoes; and if

so, under what conditions. This scenario shows up in many different domains, such

as high-throughput biology, medical imaging, surveillance, and many others. Our

emphasis in this dissertation is on the notion of learning compact representations

from examples, and not on using the learned representations for future decision-

making. This difference leads to some key differences in the assumptions made in the

mathematical formulation of the problem, as we will discuss later.

Figure 1.1: Sample image search results for mangoes

Another scenario is illustrated by thinking about walking into a newly constructed

library, only to encounter a big heap of books and some empty shelves. When assigned

the task of organizing these books into a meaningful order to facilitate easy access for

the library users, we would naturally use our implicit understanding of how similar

(or dissimilar) any two books are - and organize the books in such a way that similar

books end up together on the shelves and dissimilar books end up far apart from each

other. In other words, given a collection of books and the task of organizing them

2



Chapter 1. Overview

(along with an implicit understanding of the similarity or dissimilarity of these books),

the library user discovers a data-driven organizational representation that facilitates

efficient use of the book collection. There are many scenarios in everyday world,

where we encounter similar situations - for example, large collections (or databases)

of images or video clips without a meaningful organizational structure. Being able to

find a meaningful data-driven organizational representation simply based on content

based similarity (or dissimilarity), but without any labels, would greatly facilitate the

usability of such databases.

The two scenarios above (a child learning the compact representation of the space

of mangoes, and a library user learning the data-driven organizational structure of a

collection of books based on the implicit notion of similarity or dissimilarity) illustrate

the general life examples that motivate the set of problems that we attempt to address

in this dissertation.

1.1.1 Background

Mathematical characterization of the similarity of forms across different organisms

was one of the subjects of exploration in the classic work of D’Arcy Thompson

[Thompson, 1942] (first published in 1917). In the final chapter of his influential

book, Thompson proposed the theory of transformations to show how the differences

between the forms of related species can be represented geometrically. Figure 1.2

shows the transformations that are used to relate different species of fish to each

other [Arthur, 2006]. While Thompson’s work primarily dealt with geometric trans-

formations in biological organisms, Grenander proposed significant generalizations in

his pattern theory [Grenander, 1993]. Similar ideas have been extensively used in

computer vision and medical imaging domains to solve alignment and recognition

problems - especially from a geometric perspective [Thompson, 1942; Fischler and

3



Chapter 1. Overview

Figure 1.2: D’Arcy Thompson’s Theory of Transformations
The deformed geometric coordinate frame around each fish shows the

transformations that are used to relate different fish to each other.The simplest
transformation is the ’shear’ required to produce the form of Sternoptyx diaphana

(bottom right) from that of Argyropelecus olfersi(top right)[Arthur, 2006].

Elschlager, 1973; Bajcsy and Kovacic, 1989; Yuille et al., 1992; Grenander and Miller,

1994; Christensen et al., 1996; Chui and Rangarajan, 2000; Belongie et al., 2002;

Berg, 2005].

1.2 Outline

1.2.1 Case A: Many Examples from One Class - Unknown Model

Let us assume that the given examples (multi-dimensional signals) are all various

transformed instances of some unknown underlying model and assume that the struc-

ture of transformations is known. All examples are drawn from one class. Let us

4



Chapter 1. Overview

denote the set of examples of a given class as Φ
.
= {I i}N

i=1 where N ∈ Z+ is the

cardinality of the set. Let Il be the latent underlying model. Il(·) and I i(·) can be

represented as: Il, I
i : Ω ⊂ RP 7→ R, where P indicates the dimension of the domain

of Il. Let gi induce the mapping from I i(·) to Il(·) such that gi : Ω 7→ Ω. Thus,

Il = I i ◦ gi. Now the challenge here is to estimate this unknown generative model

Il jointly from the set of examples Φ without making any prior assumptions on the

model, while simultaneously estimating the various transformations {gi}N
i=1 affecting

Il. Given this formulation, we ask ourselves:

(1) How can we infer the generative model?

(2) What real-world situations can we model using this formulation?

(3) Once these underlying model representations are learned, how can we adapt the

learned representations to account for novel observed data?

In Chapter 2, we choose one example scenario of aligning binary shape images

(Section 2.1) and describe the problem formulation and algorithmic details for Joint

Pattern Alignment (JPA) framework, that allows us to answer some of the questions

above. In Section 2.5, we will describe some relevant work from the literature in the

context of JPA. We discuss how useful representations (generative models) can be

learned for multi-dimensional signals such as: (a) Noisy shape templates undergoing

geometric transformations (by combining segmentation and alignment) (Chapter 3),

(b) Gray-scale anatomical images undergoing intensity variations (Chapter 4), (c)

Spatio-temporal neural signals undergoing amplitude and phase variations (Chap-

ter 5), all using the JPA framework. We show how such systems can be used in

practical applications such as: constructing high-throughput data-driven spatial gene

expression atlases for Drosophila Melanogaster imaginal discs (Chapter 3), perform-

ing comparative gene expression analysis (Chapter 3), denoising the magnetic res-

onance (MR) images from random field (RF) bias (Chapter 4) and estimating the

multicomponent event related potentials from single trial of neural signal recordings

5



Chapter 1. Overview

(Chapter 5). In each chapter, we discuss the state of the art in the domain, as well

as the future directions for the approach we have taken.

1.2.2 Case B: Many Classes, No Labels, Known Metric

In Chapter 6, given a large collection of videos containing activities, we investigate

the problem of organizing it in an unsupervised fashion into a hierarchy based on

the similarity of actions embedded in the videos. We use spatio-temporal volumes

of filtered motion vectors to compute appearance-invariant action similarity mea-

sures efficiently (and robustly) - and use these similarity measures in hierarchical

agglomerative clustering to organize videos into a hierarchy such that neighboring

nodes contain similar actions. This naturally leads to a simple automatic scheme for

selecting videos of representative actions (exemplars) from the database, for easily

browsing the entire database and for efficiently indexing the whole database. We

compute a performance metric on the hierarchical structure to evaluate goodness of

the estimated hierarchy, and show that this metric has potential for predicting the

clustering performance of various joining criteria used in building hierarchies. Our

results show that perceptually meaningful hierarchies can be constructed based on

action similarities with minimal user supervision, while providing favorable clustering

performance and retrieval performance.

Finally, in Chapter 7, we discuss some future directions and potentially interesting

extensions to the work we have presented in this dissertation.

6



Chapter 1. Overview

1.3 Contributions

1) We have proposed a joint pattern alignment (JPA) algorithm that improves upon

state of the art via principled choice of regularization in the optimization scheme.

This allows users to encode domain knowledge systematically. This also makes JPA

amenable to learning parameters of probability distributions in the situations where

training data and user supervision are available (Chapter 2).

2) We have demonstrated a principled way of combining unsupervised alignment

and segmentation into a semi-supervised algorithm for high-throughput joint pat-

tern alignment that is tolerant to clutter or background noise. We demonstrated

the applicability of this semi-supervised algorithm in geometric alignment of noisy

shape templates used in constructing high-throughput spatial gene expression atlases

(Chapter 3).

3) We have demonstrated the applicability of joint alignment approach for removing

random field bias from magnetic resonance images (Chapter 4) and to denoise time-

series signals such as event related potentials recorded from neuroscience experiments

(Chapter 5).

4) We have demonstrated the applicability of unified framework of JPA for handling

both spatial transformations (e.g., geometric variations) as well as non-spatial trans-

formations (e.g., variable spatial bias, variations in latency or amplitude of signals),

thereby addressing a variety of useful practical applications (Chapters 3, 4, 5).

5) We have proposed the idea of directly using compressed domain features (specifi-

cally, filtered motion vectors) as features for computing action similarity. A similarity

measure built upon this idea has resulted in robust and efficient solution to compute

the action similarity between any two given video clips. Due to the use of block-

based sampling of motion field (inherent in compressed domain motion features) and

a direct re-use of precomputed features from the compressed representation of the

7



Chapter 1. Overview

videos, our solution to computing compressed domain action similarity is orders of

magnitude faster than the state of art and robust to appearance variations, while

providing high quality action recognition performance (Chapter 6).

6) We have proposed an unsupervised algorithm to efficiently organize large collec-

tions of high-dimensional data such as video clips based on content-based similarity

(specifically, similarity of actions embedded in the videos). Our results show that

perceptually meaningful hierarchies can be constructed based on action similarities

with minimal user supervision, while providing favorable clustering performance and

retrieval performance (Chapter 6).

8



Chapter 2

Joint Pattern Alignment via Entropy

Minimization

The classical set-up of pattern matching is a pair-wise pattern alignment (PPA) for-

mulation [Thompson, 1942; Fischler and Elschlager, 1973; Bajcsy and Kovacic, 1989;

Yuille et al., 1992; Grenander and Miller, 1994; Christensen et al., 1996; Chui and

Rangarajan, 2000; Belongie et al., 2002; Berg, 2005]. In PPA, a model is either given

or assumed, and a novel observation is warped through a pre-defined transformation

space such that the warped observation matches the given model (Figure 2.1). One of

the standard problems with pairwise pattern matching formulation is that the align-

ment result can suffer from local minima. In the joint pattern alignment formulation

we only have access to a given set of examples - but no model is given. While the

space of transformations is specified, the specific transformation parameters that map

each example to the underlying model are also unknown. So joint pattern alignment

procedure has to solve for both the model and the set of of warping transformations

simultaneously (Figure 2.2).

In this chapter, we discuss an information theoretic formulation to solve the joint

9



Chapter 2. Joint Pattern Alignment via Entropy Minimization

Figure 2.1: Pairwise Pattern Alignment Set-up
A model is given, and a novel observation (target) is warped through a pre-defined
transformation space such that the warped observation matches the given model.

The example images here are the eye/antennal imaginal discs of Drosophila
melanogaster.

pattern alignment problem. Note that the idea of an information theoretic formula-

tion for alignment problem is not new. Viola et al. and Collignon et al. introduced a

novel information theoretic approach for solving pair-wise medical image registration

problem [Viola and Wells, 1997; Collignon et al., 1995]. Viola’s method of align-

ment via maximizing mutual information has become the dominant method in the

medical imaging community and has been widely adopted in many clinical applica-

tions. Learned-Miller et al. proposed a generalization of Viola’s approach to joint

group-wise (ensemble) alignment scenario (in the context of aligning and recognizing

hand-written characters) [Miller et al., 2000]. This joint ensemble alignment proce-

dure called “congealing” [Miller et al., 2000] utilizes the information across the whole

ensemble, and is empirically shown to be robust against local minima. The pur-

pose of this alignment procedure was to learn densities on transforms, so that these

learned densities could be used for classification purposes. Their alignment method

inspired the unsupervised version of the joint alignment algorithm that we present in

Section 2.3. However, some differences exist between our approach (JPA) and that

of Learned-Miller et al. (congealing). We will highlight and discuss the differences

10



Chapter 2. Joint Pattern Alignment via Entropy Minimization

between our approach and congealing in Section 2.5, after the problem formulation

and technical details are introduced in Section 2.1 using a concrete example. We also

proposed a semi-supervised version of JPA that is robust to noise, such as background

clutter in biological images(see Figure 2.3), which we will present in Chapter 3.

Figure 2.2: Joint Pattern Alignment Set-up. A set of examples (all from same class) are
given but the model is unknown. The joint pattern alignment procedure has to solve for
both the model and the set of of warping transformations simultaneously. The example
images here are the eye/antennal imaginal discs of Drosophila melanogaster.

Let us assume that the given examples (multi-dimensional signals) are all vari-

ous transformed instances of some unknown underlying model and assume that the

structure of transformations is known. All examples are drawn from one class. Let

us denote the set of examples of a given class as Φ
.
= {I i}N

i=1 where N ∈ Z+ is the

cardinality of the set. Let Il be the latent underlying model. Il(·) and I i(·) can be

represented as: Il, I
i : Ω ⊂ RM 7→ R, where M indicates the dimension of the domain

of Il. Let gi induce the mapping from I i(·) to Il(·) such that gi : Ω 7→ Ω. Thus,

Il = I i ◦ gi. Now the challenge here is to estimate this unknown generative model

Il jointly from the set of examples Φ without making any prior assumptions on the

model, while simultaneously estimating the various transformations {gi}N
i=1 affecting

Il. In the following discussion (Section 2.1), we address this challenge using a joint

11



Chapter 2. Joint Pattern Alignment via Entropy Minimization

Figure 2.3: Background clutter in biological images. These typical images of Drosophila
melanogaster imaginal discs show the biological clutter (such as parts of other disc tissues,
trachea etc.) that is practically hard to remove while taking the measurements of gene
expression patterns. Considering the significant costs of extracting these biological tissues,
and of imaging them, it makes sense to use all the data instead of throwing away data
that has such clutter.

pattern alignment algorithm, and explain the mathematical formulation using the

example of joint alignment of binary shape templates.

2.1 An Example: Aligning Binary Shape Images

Let us consider the problem of aligning binary shape images of a given class. We want

to derive the objective function directly from the relevant assumptions (on the prob-

ability density functions of the transformation vectors) instead of regularizing in an

ad-hoc manner. The following derivation will make a specific (Gaussian) assumption

on the probability density functions (p.d.f.’s) of transformation components, but this

can be changed appropriately depending on domain knowledge or user-preference.

2.1.1 Notation

Let us denote the set of input binary shape images of a given class as ΦI
.
= {I i}N

i=1

where N is the cardinality of the set. Let Il be the latent underlying binary shape

image that generates the observed images. Il(·) and I i(·) can be represented as maps

12
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from Z2 to the set B = {0, 1} with a domain Ω ⊂ Z2:

Il, I
i : Ω 7→ B. (2.1)

Typically, the domain Ω is a square or a rectangular window. Let x ∈ Ω denote the

pixel location in the image (in homogeneous coordinates) such that x = [x, y, 1]T . Let

us assume that there exists gi that is the one-to-one and invertible map from I i(x)

to Il(x) such that gi : Ω 7→ Ω. Thus, for any given pixel location x,

Il(x) = I i(gi(x)). (2.2)

Let us parameterize each gi using affine component transformations: x-translation

(tx), y-translation (ty), rotation (θ), x-log-scale (sx), y-log-scale (sy), x-shear (hx),

and y-shear (hy). Let us denote the set of given binary shape images as ΦI
.
= {I i}N

i=1,

the set of transformations associated with the set of input images as Φg
.
= {gi}N

i=1

and the set of transformed binary shape images as ΦIg

.
= {I i

g}N
i=1 where N is the

cardinality of the set. Let us denote I i
g(x) = I i(gi(x))). Let us assume that the

transform parameters are i.i.d. random variables. Fixing the order of composition to

ensure unique mapping (since the matrix multiplication is not commutative), ∀x ∈ Ω,

this can be written as:

gi(x) = F (x; tix, t
i
y, θ

i, si
x, s

i
y, h

i
x, h

i
y) (2.3)

gi(x) = F (x; {vi
j}K

j=1) (2.4)

{vi
j}K

j=1 = [tix, t
i
y, θ

i, si
x, s

i
y, h

i
x, h

i
y] (2.5)

where 1 ≤ i ≤ N , 1 ≤ j ≤ K(K is the number of parameters chosen), and v ∈
ZN

+ × RK . In this example, K = 6. Writing gi out explicitly (fixing the order of

13
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composition), we get:

gi(x) =


1 0 tix

0 1 tiy

0 0 1

 ·


cos(θi) −sin(θi) 0

sin(θi) cos(θi) 0

0 0 1

 ·


esi
x 0 0

0 esi
y 0

0 0 1

 ·


1 hi
x 0

hi
y 1 0

0 0 1

 · x (2.6)

2.1.2 Problem Formulation

Let vi = {vi
j}K

j=1 and Φv = {vi}N
i=1. Let P (Ii|vi

1, ..., v
i
K ; Il) be some likelihood function such

that,

P (ΦI |Φv; Il) =
N∏

i=1

P (Ii|vi; Il). (2.7)

Let Θ .= {Il,Φv}. We would like to infer Θ given the set of binary shape templates ΦI . The

graphical model shown in Figure 2.4 illustrates the generative model associated with JPA.

Formulating our goal as a Maximum a posteriori (MAP) estimation problem, we want to

estimate Θ by Θ̂ such that

Θ̂ = arg maxIl,Φv
P (Φv|ΦI ; Il). (2.8)

Using Bayes’ rule and ignoring the constant denominator,

Θ̂ = arg maxIl,Φv
P (ΦI |Φv; Il)P (Φv). (2.9)
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Figure 2.4: Graphical model illustrating the generative model associated with Joint Pattern
Alignment (JPA).

Since we assume that the transformation parameters vi and given binary shape images Ii

are independent,

Θ̂ = arg maxIl,Φv

N∏
i=1

P (Ii|vi; Il)P (vi). (2.10)

Using Equation (2.4), and noting that gi is a bijective map such that gi : Ω 7→ Ω, we can

write:

P (Ii|vi; Il) = P (Ii ◦ gi|vi; Il). (2.11)

Let us make the assumption that the value of Ii(gi(x)) at pixel location x is independent

of the other pixel locations. In other words, we assume that the probability distributions

of values at each pixel location are i.i.d. Thus,

P (Ii ◦ gi|vi; Il) =
∏
x∈Ω

P (Ii(gi(x))|vi; Il)

=
∏
x∈Ω

P (Ii(gi(x))|vi; Il(x)). (2.12)
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Thus,

N∏
i=1

P (Ii|vi; Il) =
N∏

i=1

∏
x∈Ω

P (Ii(gi(x))|vi; Il(x))

=
∏
x∈Ω

N∏
i=1

P (Ii(gi(x))|vi; Il(x)). (2.13)

Since we assumed that the transformation parameters vi
j are independent,

P (vi) =
K∏

j=1

P (vi
j). (2.14)

Hence,

Θ̂ = arg maxIl,Φv


{∏

x∈Ω

N∏
i=1

P (Ii(gi(x))|vi; Il(x))

}
N∏

i=1

K∏
j=1

P (vi
j)


 . (2.15)

Now, let us assume (in this example) that P (vi
j) has a Gaussian distribution, such that

P (vi
j) = N(vi

j ;µj , σ
2
j ). (2.16)

Taking logarithm,

Θ̂ = arg maxIl,Φv

∑
x∈Ω

N∑
i=1

log{P (Ii(gi(x))|vi; Il(x))}

+
N∑

i=1

K∑
j=1

log{ 1√
2πσ2

j

exp{−
(vi

j − µj)2

2σ2
j

}}. (2.17)

Let us define α(x) to be the pixel stack in ΦI at location x and αg(x) as the pixel stack in

ΦIg at location x. Since ΦI is a set of binary images, α(x) ∈ BN and αg(x) ∈ BN , where

B = {0, 1}. Writing this out explicitly:

αg(x) = [I1(g1(x)), I2(g2(x)), ..., Ii(gi(x)), ..., IN (gN (x))]T . (2.18)
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Also, define H(αg(x)) as the empirical entropy of the pixel stack αg(x). Noting that entropy

is the expectation of negative log-likelihood, and expanding the logarithm in the second term

(while ignoring the constant),

Θ̂ = arg minIl,Φv

∑
x∈Ω

H(αg(x))− 1
N

N∑
i=1

K∑
j=1

log{σj}+
1
N

N∑
i=1

K∑
j=1

(vi
j − µj)2

2σ2
j

 . (2.19)

If we assume that σj =
√

K,∀j = 1, . . . ,K and ignore the constant term, then

Θ̂ = arg minIl,Φv

{∑
x∈Ω

H(αg(x)) +
N∑

i=1

1
2NK

||vi
j − µj ||22

}
(2.20)

where || · ||22 represents L2-norm. Since we model transformation parameters as the random

variables causing Ii(x) to vary from Il(x), we can see that these two will be the same when

the randomness due to vi is removed.

This Maximum a posteriori (MAP) estimation can be formulated as solving an opti-

mization problem. The optimization objective function Ψ .= Ψ(Φv) is defined as

Ψ .= {
∑
x∈Ω

H(αg(x)) +
N∑

i=1

1
2K

||vi − v̄i||22} (2.21)

where v ∈ ZN
+ × RK are the vectors of transformation parameters (Equation (2.5)).

The JPA algorithm for the alignment of binary shape templates proceeds as follows:

1. Maintain a transform parameter vector vi (Equation (2.5)) for each shape image Ii.

2. Initialize all of the transformation matrices gi to the identity matrix. (In the binary

shape example discussed earlier, each parameter vector will specify a transformation

matrix gi = F (vi) according to Equation (2.6). Initialize all vi to zero vectors. This

means µj = 0 for 1 ≤ i ≤ N , 1 ≤ j ≤ K.)

3. Choose an appropriate penalty term in Ψ (Equation (2.21)) based on the probability

assumptions made on transformation parameters (Equation (2.16))
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4. Compute Ψ for the current set of images from Equation (2.21).

5. Repeat until convergence:

For i = 1, ..., N ,

(a) Calculate the numerical gradient 5viΨ of Equation (2.21) with respect to the

transformation parameters vi
j ’s for the current image (1 ≤ j ≤ K).

(b) Update vi as: vi = vi − γ 5vi Ψ. (where the scaling factor γ ∈ R).

(c) Update γ (according to some reasonable update rule such as the Armijo rule

[Boyd and Vandenberghe, 2004]).

Since Ψ(·) is a differentiable function and the level sets

A({ui}N
i=1) =

{
{vi}N

i=1 ∈ RK×N | Ψ({vi}N
i=1) ≤ Ψ({ui}N

i=1)
}

(2.22)

are bounded for all {ui}N
i=1 ∈ RK×N , then the JPA routine will at least reach an accu-

mulation point such that ∇viΨ = 0 for all i = 1, . . . , N [Polak, 1997], even though the

optimization routine will generally converge to a local minimum. Note that at a local min-

imum the set of binary shape images ΦI = {Ii}N
i=1 are reasonably aligned (but need not

be perfectly aligned) and the set of transformations {gi}N
i=1 is properly described by the

parameters {vi}N
i=1. Il is estimated by choosing the medoid of the set of shapes, using an

appropriate measure (such as the magnitude of transformation from one shape template to

another based on the values of vi. Note that the introduction of a penalty (regularization)

function is critical in achieving the convergence of the optimization routine since this term

diverges as the norm of vi goes to infinity, thus making the level sets of Ψ(·) be bounded.

2.2 Appropriate Regularization

One of the key things to note from the discussion earlier, is the relationship between the

priors imposed on the transformation parameters (Equation (2.16)) and the penalty term
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in the final objective function that is minimized in the optimization part (Equation (2.21)).

The previous section shows that when the prior has a Gaussian p.d.f. form (with a spe-

cific choice of value for the variance parameter), the penalty term will be of the form of

an L2-norm on vi ∈ RK . Similarly, if the prior has a Laplacian p.d.f. form, the penalty

term will be of an L1-norm form on vi ∈ RK . Various other penalties can be constructively

computed, depending on the assumptions applied on the distributions of the transformation

parameters. Since the goodness of the final outcome of the joint alignment is critically de-

pendent on the appropriate choice of penalty in the objective function1, this key observation

provides us a structured way of choosing a penalty based on the probabilistic assumptions

imposed on the transformation parameters.

Typically, the information in Equation (2.16) is defined by the user, based on empirical

knowledge. Going back to the example of the child learning about the space of mangoes

(as discussed in Section 1.1), this is similar to knowing that mangoes are not spherical and

are restricted to a certain space of shapes. This information encodes knowledge about the

range of transformations, which imposes an appropriate structure on the optimization path.

2.3 JPA Algorithm: General Setting

In a general setting, let us assume that the given examples (multi-dimensional signals) are

various transformed instances of some unknown underlying model and assume that the

structure of the transformations is known. All examples are drawn from one class. Let us

denote the set of examples of a given class as Φ .= {Ii}N
i=1 where N ∈ Z+ is the cardinality

of the set. Let Il be the latent underlying model. Il(·) and Ii(·) can be represented as:

Il, I
i : Ω ⊂ RM 7→ R, where M indicates the dimension of the domain of Il. Let gi

induce the mapping from Ii(·) to Il(·) such that gi : Ω 7→ Ω. Thus, Il = Ii ◦ gi. Let

gi(x) = F (x; vi) for 1 ≤ i ≤ N , where the parametric structure of function F (·), and the

1See Section 5.3, where we show some example results that demonstrate that choosing appropriate
regularization function based on the assumptions made on prior distributions of transformation
parameters has a clear impact on the final result.
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probability distribution function P (vi
j) for 1 ≤ j ≤ K are known. K denotes the number

of components in the parameterization of transformation gi.

The JPA algorithm proceeds as follows:

1. According to the problem at hand, set up the explicit parameterization for gi = F (vi).

2. Maintain a transform parameter vector vi for each example Ii.

3. Initialize all of the transformation matrices gi, for 1 ≤ i ≤ N , to the identity matrix.

4. Choose an appropriate penalty term in objective function Ψ. In the binary shape

template alignment example, Ψ can be computed from Equation (2.21) based on the

probability assumptions made on transformation parameters (P (vi
j)) (See Section 2.2

for details).

5. Compute Ψ for the current set of examples (Φ .= {Ii}N
i=1).

6. Repeat until convergence:

For i = 1, ..., N ,

(a) Calculate the numerical gradient 5viΨ with respect to the transformation pa-

rameters vi
j ’s for the current image.

(b) Update vi as: vi = vi − γ 5vi Ψ. (where the scaling factor γ ∈ R).

(c) Update γ (according to some reasonable update rule such as the Armijo rule

[Boyd and Vandenberghe, 2004]).

2.4 JPA Algorithm: Convergence

Since Ψ(·) is a differentiable function and the level sets

A({ui}N
i=1) =

{
{vi}N

i=1 ∈ RK×N | Ψ({vi}N
i=1) ≤ Ψ({ui}N

i=1)
}

(2.23)
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are bounded for all {ui}N
i=1 ∈ RK×N , then the JPA routine will at least reach an accu-

mulation point such that ∇viΨ = 0 for all i = 1, . . . , N [Polak, 1997], even though the

optimization routine will generally converge to a local minimum. Note that at a local min-

imum the set of examples ΦI = {Ii}N
i=1 are reasonably aligned (but need not be perfectly

aligned) and the set of transformations {gi}N
i=1 is properly described by the parameters

{vi}N
i=1. Il is estimated by choosing the medoid of the set of examples, using an appropriate

measure (such as the magnitude of transformation from one example to another based on

the values of vi. Note that the introduction of a penalty (regularization) function is critical

in achieving the convergence of the optimization routine since this term diverges as the

norm of vi goes to infinity, thus making the level sets of Ψ(·) be bounded.

In a general setting, for non-differentiable (but continuous) Ψ, one can use coordinate

descent (or any derivative free algorithm). If Ψ is not even continuous, then the optimization

can be approached by using methods such as simulated annealing [Kirkpatrick et al., 1983].

2.5 Related Work

As mentioned earlier, Viola et al. and Collignon et al. introduced a novel information

theoretic approach for solving pair-wise medical image registration problem [Viola and

Wells, 1997; Collignon et al., 1995]. A generalization of Viola’s pair-wise approach to

joint group-wise (ensemble) alignment scenario (in the context of aligning and recogniz-

ing binary shape masks of hand-written characters) was proposed by Learned-Miller et al.

[Miller et al., 2000]. Their joint ensemble alignment procedure called “congealing” [Miller,

2002] utilizes the information across the whole ensemble, and is robust against local min-

ima. The congealing method is the closest in spirit to the unsupervised version of the joint

alignment algorithm that we discussed in Section 2.3. Geometric approaches to the joint

pattern alignment problem also exist in literature, but since our approach is information-

theoretic, the reader interested in geometric approaches is referred to [Pennec, 2006a;

Pennec, 2006b] for an overview of these methods.
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Vedaldi et al. pointed out that, from the point of view of learning data-driven rep-

resentations, the regularization is ad-hoc in “congealing” algorithm [Vedaldi and Soatto,

2007]. Given a specific instance of joint pattern alignment problem, it is not clear how the

penalty term needs to be chosen. In Section 5.3, we also show results that demonstrate

that not choosing appropriate regularization can have adverse impact on the final result of

joint alignment algorithms. This is an important practical issue for a system designer who

wants to use an ensemble alignment algorithm. Since the emphasis of Learned-Miller et

al. was to learn a density over the transformations for the purposes of classification, they

do not impose any priors on the transformation parameters a priori. Our Joint Pattern

Alignment approach (JPA) for learning the optimal representations from examples follows

the information theoretic paradigm (similar to “congealing”), where we have shown a clear

and principled connection between the priors on the transformation parameters and the

regularization term used in the optimization stage. Since our focus is primarily on learning

the data-driven representation of the ensemble, we assume that the user has some prior

domain knowledge that is implicitly encoded in the densities imposed on the transforms.

In the unsupervised version of the JPA, the densities on the transformation parameters are

assumed to be known a priori. In practice, this approach allows the user to make use of

the domain knowledge (in the form of probabilistic assumptions given on the transforma-

tion parameters) to derive the correct penalty term for the objective function Ψ. Another

key problem with “congealing” is that it cannot handle noisy patterns (see Figure 2.3),

because it is explicitly designed to only account for the registration errors. In our work, we

have proposed a semi-supervised variation to JPA that addresses this issue2 by combining

segmentation and joint alignment for analyzing large datasets (high-throughput scenarios).

Frey and Jojic proposed the idea of transform invariant clustering by including clutter

and transformation as unobserved, latent variables in a mixture model. Using this pro-

cedure, they obtained a new transformed mixture of Gaussians, which is invariant to a

specified set of transformations. They also showed how a linear-time EM algorithm can be

2See Chapter 3 for details.
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used to fit this model by jointly estimating a mixture model for the data and inferring the

transformation for each image. In their work, a fixed set of transformations are used (as

opposed to continuous set of transforms used in JPA or “Congealing”). The complexity

of their algorithm is linear in the number of possible transformations (as opposed to the

number of transformation parameters in JPA) per each iteration.

2.6 Discussion

It is useful to note that our approach does not make any parametric assumptions on the

underlying model (in the current example, the model is Il). The joint shape alignment

approach requires no correspondence solving stage, since we attempt to align the entire

template without choosing any landmark points (as done by approaches like shape con-

text and geometric blur [Belongie et al., 2002; Berg, 2005]). JPA is more robust to local

minima compared to the standard pair-wise alignment formulations due to the data-driven

smoothing provided by the ensemble of examples. Just like the other information theoretic

approaches to alignment, our approach also gives a quantitative measure (Ψ) that can be

used as a putative goodness measure to evaluate the quality of alignment.

On the other hand, convergence of the JPA algorithm can get very slow as the number

of examples (N) increases. The convergence can potentially slow down significantly as the

dimensionality of the data samples increases (due to the inherent increase in the number

of associated transformation parameters). The unsupervised version of the joint alignment

is not designed to handle errors other than the alignment and noise parameters that it

explicitly models in the formulation. Landmark point based alignment algorithms may

perform better in situations where occlusion is a serious practical issue, but they would

require the model to be known a priori. An alternative for handling partial occlusions in

the joint alignment framework is the semi-supervised variation of JPA that combines the

JPA algorithm with segmentation (Section 3.3).
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Chapter 3

Constructing Atlases of Gene

Expression in Drosophila Imaginal

Discs

3.1 Introduction

The central goal of this chapter is to discuss the semi-supervised framework introduced

in [Ahammad et al., 2005] for high-throughput joint pattern alignment problem and to

show the application of the framework to construct data driven atlases of gene expression

in Drosophila melanogaster imaginal discs [Harmon et al., 2007]. It is worth noting that,

while our early work [Ahammad et al., 2005] used the coordinate descent based “congealing”

approach [Miller, 2002] for the unsupervised learning part, our current pipeline uses the

improved formulation of the joint alignment problem as discussed in Chapter 2. This

allows us to make use of appropriate probabilistic assumptions given on the transformation

parameters to derive the correct penalty term for the objective function Ψ, while also

making it possible to learn the distribution over the alignment parameters using some

manually segmented truth data. The goal of this chapter is to produce a map that provides
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precise, detailed information about where particular genes are expressed, and to do so over a

large number of genes. This atlas is represented in a format that facilitates computational

analysis of these patterns, in addition to providing images of the maps of expression for

human consumption.

The genome sequences of metazoan organisms contain information required to direct

the development of the animal [Arnone and Davidson, 1997]. This information is encoded

in the genome in the form of genes and regulatory sites which are bound by transcription

factors that precisely control growth and development. In order to fully understand the

developmental program, it is critical to know which genes are expressed during development,

what sequences are responsible for activating or repressing these genes, what the functions

of these genes are, and precise characterization of when and where these genes are expressed.

3.1.1 Characterizing Gene Expression Patterns

Advances in molecular biology over the past few decades have enabled researchers to deter-

mine the complete DNA sequence of the genomes of many organisms and to determine the

sequence of the vast majority of genes expressed in these, and other, organisms [Adams et

al., 2000]. Microarray technologies have enabled researchers to measure the level of expres-

sion of large numbers of individual genes in a single experiment [Lipshutz et al., 1999]. This

has provided a greatly enhanced view of the genes that are active at specific times in specific

tissues [Alizadeh et al., 2000]. However, these techniques generally require a large tissue

sample and, on their own, provide no information about the spatial patterns of expression

of genes.

In situ hybridization of tissues with labeled probes for individual genes enables re-

searchers to measure spatial patterns of expression at high resolution. However, in situ

hybridization can only be used to measure a limited number of genes at a time, usually one.

Ideally, one would be able to measure the spatial patterns of expression of large numbers

of genes and be able to compare, cluster, and classify these patterns of expression. Current

experimental strategy for such experiments entails setting up a high-throughput production
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system for the generation of large numbers of images which can then be processed by ei-

ther human or computer. In order to interpret and compare individual patterns, one must

either identify individual morphological structures or bring the images of corresponding

tissues into an alignment, or registration, such that they can be meaningfully compared.

3.1.2 Spatial Patterns of Gene Expression in Drosophila Imaginal

discs

In holometabolous insects (insects that undergo a complete metamorphosis), also known

as the members of the taxonomical subdivision endopterygota, or as endopterygotes, the

wings and other appendages develop on the inside of the juvenile insect [Snodgrass, 1935;

Beverley and Ponsonby, 2003]. In the hemimetabolous insects, on the other hand, the adult

appendages grow out from the larval appendages directly. In Drosophila and other higher

diptera, the primordial tissues of the adult appendages are formed during embryogenesis

[Cohen, 1993]. For the fly, the benefit is that these tissues can be patterned at an early

stage, allowing for complex simultaneous development both of the embryonic and larval

insect, and of the eventual adult appendages. For the scientist, these primordial tissues

afford a unique opportunity to study appendage development throughout the life-cycle of

the fly. These primordial tissues are known as imaginal discs. For further details about

imaginal discs, the reader is referred to [Held, 2002].

Drosophila have nine pairs of imaginal discs: the labial, clypeolabral, humeral, eye-

antennal, first leg, second leg, third leg, wing, and haltere discs, as well as a single genital

disc. In our work, we restrict out attention to the larger disc types: the wing, leg, haltere

and eye/antenna imaginal discs. Imaginal discs have been well studied for decades and there

is a large body of literature concerning the development and patterning of imaginal discs

[Held, 2002]. Large-scale studies of patterns of gene expression in Drosophila have been

performed using DNA microarrays both on whole organisms [Arbeitman et al., 2002] and

individual tissues such as imaginal discs [Klebes et al., 2002; Butler et al., 2003]. Klebes et

al. compared differential gene expression in different imaginal discs and between imaginal

26



Chapter 3. Constructing Atlases of Gene Expression in Drosophila Imaginal Discs

discs and non-disc tissue. Butler et al. manually dissected imaginal discs and were able to

identify transcripts that were enriched in specific compartments of the wing discs [Klebes et

al., 2002]. However, these studies yield little information about the precise spatial patterns

of gene expression.

In order to compute spatial patterns of gene expression, one must find the structure

of interest in the image. For imaginal discs, this means recognizing and extracting the

portion of the image that corresponds to the imaginal disc, separating this from the image

background, and bringing this model into registration with a canonical model such that

multiple patterns of expression can be spatially compared. Registration of the image to a

canonical model requires that the shape of the disc be generated in a computable form. One

can either manually specify the shape of the objects in question, or the shapes can be learned

from the data. We present an information theoretic framework to joint pattern alignment

(JPA) for aligning images of Drosophila imaginal discs that is robust, and requires minimal

expert supervision.

3.1.3 Problem Definition

Given a large input ensemble of noisy Drosophila imaginal disc images of a given tissue

class, our goal is to learn the underlying shape representation of the tissue nonparametri-

cally while bringing the given images into alignment. This learned representation greatly

facilitates quantitative stain scoring analysis on the imaginal disc images, as well as allow-

ing comparative analysis of spatial gene expressions. We demonstrate the segmentation

and alignment results for various tissue classes of Drosophila imaginal discs and discuss the

results.

3.1.4 Challenges

The tissue structures in typical Drosophila imaginal discs have significant intra and inter-

class variability in size, shape and stain patterns. Thus, shape models learned from one class

cannot be used for another tissue class without making significant changes in the processing

27



Chapter 3. Constructing Atlases of Gene Expression in Drosophila Imaginal Discs

pipeline if one were to use model based alignment algorithms. Furthermore, there are far

fewer identified and named morphological parts or regions in Drosophila imaginal discs than

in the developing Drosophila embryo, for example. It is difficult to make any parametric

or model based assumptions for tissue shapes given these limitations. Manual annotation

and curation are extremely time-consuming and costly in high-throughput spatial gene

expression analysis experiments. It is highly desirable to have a processing pipeline that can

operate for various imaginal disc tissues such as wings, halteres, legs, eyes, etc., (shown in

Figure 3.1) without significant re-structuring. In our work, we propose a simple yet effective

computational framework that addresses these demands of high-throughput systems for the

analysis of spatial gene expression by combining segmentation and nonparametric alignment

algorithms.

Figure 3.1: A typical set of in situ stained Drosophila imaginal disc images. Each row shows
a different tissue class. First row: wing discs, second row: haltere discs, third row: leg discs,
fourth row: eye discs. There is significant inter-class and intra-class variability both in the
shapes, sizes and the stain patterns.
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3.1.5 Related Work

Precise spatial patterns of expression of individual genes has been well studied for many

years and recently the BDGP has studied the spatial patterns of gene expression of large

numbers of genes in developing Drosophila embryos through in-situ hybridization to in-

dividual gene probes [Tomancak et al., 2002]. The individual images are then manually

curated with a list of tissues in which the gene of interest is expressed. This yields spatial

information at the resolution of recognizable morphological structures in the embryo and

this information is then clustered with DNA microarray data to yield clusters of genes with

related spatial patterns of gene expression [Berman et al., 2002]. The limiting factor for

this approach is that the annotation of spatial expression pattern requires manual curation.

Furthermore, this approach would likely be less successful in the imaginal disc where there

are far fewer identified and named morphological parts or regions.

Large-scale studies of patterns of gene expression in Drosophila have been performed

using DNA microarrays both on whole organisms [Arbeitman et al., 2002] and individual

tissues such as imaginal discs. Klebes et al. compared differential gene expression in dif-

ferent imaginal discs and between imaginal discs and non-disc tissue [Klebes et al., 2002].

Butler et al. manually dissected imaginal discs and were able to identify transcripts that

were enriched in specific compartments of the wing discs [Butler et al., 2003]. However,

these studies yield little information about the precise spatial patterns of gene expression.

Recent studies of precise spatial patterns of gene expression for large numbers of genes

in developing Drosophila embryos through in situ hybridization [Tomancak et al., 2002;

Berman et al., 2002] require annotation, and suffer from the fact that the annotation of

spatial expression pattern requires manual curation. Kumar et al. [Kumar et al., 2002]

applied machine vision techniques to low-resolution images of in situ stained embryos and

developed an algorithm for searching a database of patterns of gene expression in the em-

bryos. Peng and Myers [Peng and Myers, 2004] have performed automated embryo registra-

tion and stain classification by using Gaussian mixture models. Yet, most of the previous

work makes some parametric assumptions on the shape of the tissue, and the registration
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techniques used are very simplistic (such as aligning the major and minor axes for embryo

images [Peng and Myers, 2004]).

In the approach taken by Tomancak et al. [Tomancak et al., 2002], genes are manually

curated by an expert operator who labels images corresponding to individual genes as indi-

cating in which specific tissues the gene of interest is expressed. This approach works well,

but requires manual annotation and a precise (and consistent application of a) taxonomical

classification of the tissues in the organism. Such a taxonomy does not exist for Drosophila

imaginal discs, and we see this atlas of gene expression in imaginal discs as a tool that

could be used to create such a taxonomy, rather than a process that requires that such a

taxonomy exists. A similar approach has been taken by Baldock et al. for the analysis

of the developing mouse embryo (as part of the Edinburgh Mouse Atlas Project -EMAP),

although their approach yields a volumetric 3-dimensional representation and requires man-

ual alignment and warping of the image to a reference model by the annotation of tie-points

entered by an expert operator [Baldock et al., 2003]. Our approach, while presently lim-

ited to 2-dimensional representations, automatically learns consensus imaginal disc shapes

from a handful of manually segmented training examples and subsequently automatically

aligns and extracts the imaginal disc shapes and produces a representation of the spatial

extent of the expression of individual genes, in the context of a global reference map for

each imaginal disc. There are also efforts to explore spatial patterns of gene expression

in Drosophila embryos by automatically reconstructing volumetric models of transcript lo-

calization using confocal slices of embryos stained with fluorescent probes to a number of

genes [Fowlkes et al., 2005]. Fowlkes et al. use the method of “shape contexts” to perform

pair-wise registration of landmark feature points across animals for a given reference gene

pattern at cellular level, and allow the resulting geometric warp to align the rest of the em-

bryo structure. While this approach has some advantages in handling occlusions robustly,

choosing a reference gene’s pattern as a basis for registering across various animals can be

problematic in situations where either there is a variation in the number of cells due to fur-

ther development or inherent variation of the chosen gene’s expression across animals due to
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natural evolutionary differences. Allen Institute for Brain Science has recently published a

detailed 3-dimensional volumetric map of spatial patterns of gene expression of 20,000 genes

in the Mouse brain [Lein et al., 2007], thus demonstrating the feasibility of a systematic

genome-wide approach to this problem. While this work is impressive for demonstrating a

genome-wide systematic results for the organism, as opposed to a subset of approximately

130 genes analyzed in our work, their registration approach requires a manually constructed

global reference atlas computed a priori. This can be a difficult requirement to satisfy in

a lot of high-throughput biological studies. In contrast, our work discovers the atlas in a

data-driven fashion.

3.2 Proposed Approach

Figure 3.2 illustrates the data flow in our approach. In this dissertation, we will mainly focus

on the computational aspects related to the segmentation, alignment and shape learning.

Let us first provide a simple overview of the procedure. Our process for determining spa-

tial patterns of gene expression begins with the mass-isolation of third instar larval imaginal

discs which serve as the input both to a microarray-based gene selection procedure and to

the subsequent labeling with probes that hybridize to individual genes. Probes are created

and then hybridized to the mass-isolated discs and are then imaged with a light microscope.

Images are captured into a digital format and an initial set of images is used for training

purposes to learn the imaginal disc shapes. Starting with a set of imaginal disc images of

a given tissue class, we find the structure of interest in the given image via segmentation.

For imaginal discs, this means recognizing and extracting the portion of the image that

corresponds to the imaginal disc and separating this from the cluttered image background.

We use a combination of manual and automatic segmentation schemes to segment a set of

these imaginal disc images and input these into the unsupervised joint pattern alignment

(JPA) procedure to learn the shape prior. This data-driven procedure learns the canonical

shape model of a given ensemble of shapes and the set of transformations associated with
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Figure 3.2: Overview of the high-throughput process for determining spatial patterns of
expression of genes in Drosophila imaginal discs.

each shape in the ensemble simultaneously by solving a constrained optimization problem.

JPA operates by minimizing the regularized sum of component-wise (pixel-wise) entropies

over a continuous set of transformations on the image ensemble and is robust against local

minima in the optimization. Once the underlying shape model is learned, it can be used

subsequently as the canonical model. We also use this model as a shape template to improve

our automatic segmentation algorithm. The learned transformations are applied back to

the original imaginal disc images to bring them into alignment in one step. Once the images

are aligned and the disc shapes are learned, the shapes are used to extract instances of these
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shapes in the target images which are then stain scored and processed. These aligned stain

scores are then used as descriptors to make comparative analysis of spatial gene expression

across multiple genes.

3.2.1 Data Generation

While there are over 13,000 genes in the Drosophila genome, many of these genes are

either not expressed at detectable levels in imaginal discs, or are expressed in all cells in

the animal. We are interested in genes that have a characteristic pattern that is neither

ubiquitous expression nor a lack of detectable expression. Our initial experiences with

randomly chosen genes, suggested that less than five percent of the genes had non-trivial,

detectable (by our methods) expression patterns in imaginal discs. Therefore we chose

to enrich the set of genes we analyzed by using microarray-based gene expression data to

identify candidate genes that are likely to have non-trivial spatial patterns. To identify

genes that may be specifically up-regulated in individual imaginal discs, we compared the

expression of genes in individual disc types to their expression in the other disc types and

selected genes that were expressed at different levels in the five imaginal disc types we

measured with expression microarrays. To perform our experiments in a high-throughput,

parallel fashion, we used the mass-isolation procedure developed by Eugene et al. [Eugene

et al., 1979] to gather hundreds of thousands of discs. We used a protocol similar to

that used by the Berkeley Drosophila Genome Project for the staining of large numbers

of Drosophila embryos with individual probes in 96-well plates. Approximately 100,000

discs were used per 96-well plate, yielding on the order of 1000 discs per probe. Mass-

isolated imaginal discs were placed in 96-well plates and stained with digoxigenin-labeled

RNA or DNA complementary to genes of interest. Images were acquired using a light

microscope equipped with Nomarski optics as described by Tomancak et al. [Tomancak

et al., 2002]. The local presence of stain results in the appearance of blue in the image;

darker blue suggests a greater local concentration of the gene of interest. However, there

is substantial probe-to-probe variability and these intensities should not be relied on as an
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accurate quantitative measure of gene concentration. Nevertheless, the different intensity

values can be used to suggest where local gene concentration is high. Images were acquired

as 16-bit per channel RGB TIFF images using Nomarski optics. Images are stored in a

database with metadata information about the preparation and image capture process. For

a detailed discussion of the data acquisition procedure and the protocols used, please refer

to [Harmon, 2007].

3.3 JPA for Learning Shapes of Drosophila Imaginal

Discs

To determine the spatial pattern of expression for a given gene from an image containing

a stained imaginal disc, we must identify the location of the disc within the image and

must be able to segment out the portion of the image that corresponds to the disc from the

background. Moreover, to perform meaningful comparative analysis across patterns, it is

highly desirable to have a reference shape model (or shape prior) to which discs of a given

type can be aligned. Given such a model (or shape prior), we can then perform quantitative

analysis of the spatial patterns across multiple images and across multiple genes.

3.3.1 Image Model for Drosophila Imaginal Discs

Drosophila imaginal discs have a morphology similar to that of an uninflated balloon [Held,

2002]. Each imaginal disc type has a characteristic shape, although the T1, T2 and T3

(thoracic segments 1, 2 and 3) leg discs are rather similar in shape to one another. In

addition, the haltere discs have a shape similar to that of the wing, but are much smaller

than wing discs. One additional factor that induces variability in the sizes and shapes of

the discs we measured, is the age of the larva from which the discs were recovered. A

simple approach to representing a canonical shape would be to choose a single reference

example for each disc and to use these as the canonicals shape to which other instances of
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the corresponding disc types would then be aligned. This is the approach taken by [Lein et

al., 2007]. Albeit, it is not clear which example would serve as a suitable reference. In our

work, we take the approach that the variation in the size and shape of the discs suggest that

learning a consensus shape model from an ensemble of images will yield a single consensus

image that is more appropriate both for representing the overall shape contained in the

training images and for use in model-based identification of discs in new images. Our

approach to bringing multiple discs into correspondence consists of manually segmenting

a small number of training images, and simultaneously learning canonical imaginal disc

shapes from these shapes while learning a set of affine transformations, with one transform

for each image, that bring the images of the discs into alignment.

Imaginal discs do have substantial depth to them, but we image a single plane from the

discs and consider an idealized 2-dimensional representation of a disc. A single focal plane

is selected for each image to maximize visibility of any stain present in the disc and the

choice of focal plane generally does not affect the perceived boundaries of the disc.

We denote the set of input imaginal disc images of a given class as Φ .= {Ii}N
i=1 where N

is the cardinality of the set. Each image Ii(·) can be represented as a map from the image

R3(in homogeneous coordinates) to the color space C ⊂ R3 with a small compact support

Ω ⊂ R3:

Ii(x) : x ∈ Ω 7→ c = Ii(x) ∈ C; (3.1)

where x = [x, y, 1]T ∈ R3 (in homogeneous coordinates), c = [r, g, b]T ∈ R3 is a vector

in the color space. In general, the domain Ω is a square or a rectangular window. This

representation will be used throughout the rest of the discussion whenever the mathematical

details of individual steps are explained.

All imaginal discs except the genital discs occur in pairs, one on each side of the body,

yielding a left disc and a right disc of each type. When we image the discs they are either

lying on the slide with the peripodial epithelium up or down. The combination of the hand-

edness of the disc and the orientation of the peripodial epithelium gives us 4 possibilities
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Figure 3.3: Example segmentation results for wing discs (first row) and haltere discs
(second row) using the combined segmentation procedure. Left Column: Original image
I i(x). Middle Column: Segmented tissue structure of interest I i

f (x). Right Column:
Extracted binary shape I i

s(x).

for the combined state and orientation of the disc. We make a simplifying assumption and

assume that the left and right discs are mirror images of each other and the stain pattern of

a gene in a right disc will be equivalent to the mirror image of the stain pattern of that gene

from the left disc of the same type. This assumption gives us two handedness/orientation

combinations that are considered to be in the canonical orientation. The shapes corre-

sponding to the other two handedness/orientation combinations are automatically flipped

by the JPA pipeline after manual segmentation.

3.3.2 Extracting Tissue Shapes via Segmentation

Two salient features of our image dataset make the segmentation task relatively simple.

First, Nomarski images of the discs [Tomancak et al., 2002] yield substantial highlights and

lowlights at the periphery of the discs. The background of the images is generally uniform

and one can use the significant contrast generated at the edge of the discs to identify border

regions. Second, compared to the background, the pixel intensities of the imaginal disc
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tissues have much more variability than the background, even over a small window. While

the mean pixel intensities of large regions of disc and background are very similar, the disc

has a broader range of pixel intensities and, more importantly, the local derivative values

are much higher for the disc than that of the background. This enables the use of either

the magnitude of the gradient and/or the variance of a window around a pixel as a feature

for distinguishing disc from non-disc tissue. This bimodal distribution lends itself to fitting

a mixture of two Gaussian random variables followed by labeling of each pixel as disc or

background. Furthermore, the second derivative of the image (the Laplacian) is also quite

high at the edge of the disc and serves as a useful feature for identifying discs. Using

these insights, we implemented a simple filter-and-threshold module for segmentation. It

computes the local variance of the image in a small support region, estimates the bimodal

distribution of variance in the filtered image and thresholds it appropriately to separate the

disc region from the background. This process creates a binary shape mask that we use in

following sections to learn the canonical shape model of the disc tissue.

This can be written as follows:

var(Ii(x)) =
∫ ∫

E{Ii(x)2} − (E{Ii(x)})2dx dy (3.2)

where x = [x, y, 1]T (in homogeneous coordinates), and E(.) is the expectation over the small

square window centered at x such that −α ≤ x ≤ +α, −α ≤ y ≤ +α, α ∈ R. The extracted

shape image Ii
s is then calculated as:

Ii
s(x) =

 1, if var(Ii(x)) ≥ δ

0, otherwise
(3.3)

where Ii
s(x) is a binary image of the extracted shape, x ∈ Ω and δ is a threshold value

where δ ∈ R. Ii
s(x) is a map from the Ω to the set B = {0, 1}. The segmented structure

of interest (or the foreground) Ii
f (x) can be computed by point-wise multiplication of Ii(x)
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and Ii
s(x):

Ii
f (x) = Ii(x) · Ii

s(x). (3.4)

where Ii
f (x) is a map from Ω to C. In other words,

Ii
f (x) =

 Ii(x), if var(Ii(x)) ≥ δ.

0, otherwise.
(3.5)

Sometimes this simple filter-and-threshold process results in unsatisfactory performance,

for two reasons. First, the presence of non-disc tissue (such as the trachea which is attached

to the wing disc), may interfere with the segmentation of the disc from the background,

thereby corrupting the extracted shape with the presence of this additional biological ma-

terial. Second, some regions inside the disc appear more homogeneous than others and

sometimes get misclassified as the background. This is especially true when the imaginal

discs are heavily stained. Both these problems can be addressed by performing a template

matching operation to identify the disc. Given the rough shape template of the disc, the

template matching operation is quite simple but the problem is that there is no such clean

shape template to begin with. We address this issue as follows: Using manual segmentation

on a set of disc images, we obtain relatively clean shapes of the tissue for each class. These

relatively clean structures are then fed to the nonparametric shape learning algorithm to

form a good canonical shape template. This learned shape template was used in conjunc-

tion with the simple filter-and-threshold algorithm to obtain better segmentation results

automatically in cluttered images. The manually segmented shapes were also used as truth

data for comparing the performance of our implementations of segmentation algorithms.

Our current implementation gives satisfactory segmentation results. We show some sample

segmentation results from our segmentation procedure in Figure 3.3 for wing and haltere

discs.
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3.3.3 Shape Learning

Once the shapes of the relevant disc tissues, Ii
s(x) (Equation (3.3)), are extracted in binary

image format, we use this set of binary shapes to learn the canonical underlying shape

model of the given class of disc tissues using ‘Joint Pattern Alignment ’(JPA). We denote

the set of binary shape images as Φs
.= {Ii

s}N
i=1 where N is the cardinality of the set. Let us

denote the latent binary shape of the given class of disc tissues as Il. We model each shape

image in Φs as Il transformed through a geometric transformation. Given a class, the latent

shape and the transformation are conditionally independent [Miller, 2002]. We assume that

the transformations are affine and model the affine parameters as i.i.d. random variables.

We shall assume that the transformation is a one-to-one and invertible mapping between Il

and Ii
s. We make the further assumption that the probability distribution of pixel values

at each pixel location are i.i.d. A thorough discussion of joint alignment procedure for the

set of binary shape images as Φs
.= {Ii

s}N
i=1 is provided in Section 2.1.

In our implementation, we parameterize the set of transformations gi using the follow-

ing component transformations: x-translation (tx), y-translation (ty), rotation (θ), x-log-

scale (sx), y-log-scale (sy), x-shear (hx), and y-shear (hy). Clearly, this is an over-complete

parameterization, but we made this specific choice following the efficiency arguments pre-

sented by Miller [Miller, 2002]. We experimented with different choices of parameterization,

and we will show results based on the parameterization as shown in Equation (3.9).

Fixing the order of composition to ensure unique mapping (since the matrix multipli-

cation is not commutative), this can be written as:

g = F (tx, ty, θ, sx, sy, hx, hy) (3.6)

gi = F ({vj}i) (3.7)

{vj}i = (tix, tiy, θ
i, si

x, si
y, h

i
x, hi

y) (3.8)

where 1 ≤ i ≤ N , (N is the cardinality of the set Φs), 1 ≤ j ≤ K, (K is the number of

parameters chosen), and v ∈ ZN×K .
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Writing g out explicitly, we get:

g =


1 0 tx

0 1 ty

0 0 1




cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



·


esx 0 0

0 esy 0

0 0 1




1 hx 0

hy 1 0

0 0 1

 (3.9)

The goal is to find the transformation gi that brings the associated shape template Ii
s

closest to Il. We experimented with various choices for probability distribution on param-

eters P (vi
j), and found that the alignment error is minimum for the choice of Gaussian

prior. However, the σj values for different transformation components are different - since

some parameters are allowed to vary more than others (for example, we restrict the range

of rotations that can happen). Hence, Gaussian prior (with appropriate σj value) is what

we have used in our experiments for constructing the spatial gene expression atlases. As

discussed in Section 2.2, the regularization term in the objective function Ψ1 depends on

the probabilistic assumptions made on the distribution of parameters.

The JPA algorithm for learning the shape template of imaginal discs (of a given class)

proceeds as follows:

1. Maintain a transform parameter vector vi (Equation (3.8)) for each shape image Ii
s.

Each parameter vector will specify a transformation matrix gi = F (vi) according to

Equation (3.9). Initialize all vi to zero vectors. This has the effect of initializing all

of the transformation matrices gi to the identity matrix.

2. Choose an appropriate penalty term in Ψ (Equation (2.21)) based on the probability

assumptions made on transformation parameters.2

1For details, please refer to Section 2.1.
2See Section 2.2 for details.
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3. Compute the regularized pixel-wise ensemble entropy Ψ for the current set of images

from Equation (2.21).

4. Repeat until convergence:

For i = 1, ..., N ,

(a) Calculate the numerical gradient 5viΨ of Equation (2.21) with respect to the

transformation parameters vi
j ’s for the current image (1 ≤ j ≤ K).

(b) Update vi as: vi = vi − γ 5vi Ψ. (where the scaling factor γ ∈ R).

(c) Update γ (according to some reasonable update rule such as the Armijo rule

[Boyd and Vandenberghe, 2004]).

Since Ψ(·) is a differentiable function and the level sets

A({ui}N
i=1) =

{
{vi}N

i=1 ∈ RK×N | Ψ({vi}N
i=1) ≤ Ψ({ui}N

i=1)
}

(3.10)

are bounded for all {ui}N
i=1 ∈ RK×N , then the JPA routine will at least reach an accu-

mulation point such that ∇viΨ = 0 for all i = 1, . . . , N [Polak, 1997], even though the

optimization routine will generally converge to a local minimum. Note that at a local

minimum the set of shape templates ΦIs = {Ii
s}N

i=1 are reasonably aligned (but need not

be perfectly aligned) and the set of transformations {gi}N
i=1 is properly described by the

parameters {vi}N
i=1. Il is estimated by choosing the medoid of the set of shapes, using an

appropriate measure (such as the magnitude of transformation from one shape template to

another based on the values of vi). Note that the introduction of a penalty (regularization)

function is critical in achieving the convergence of the optimization routine since this term

diverges as the norm of vi goes to infinity, thus making the level sets of Ψ(·) be bounded.

To visualize the entropy of the transformed image set for a class at each step of the

optimization, one can construct an image (Figure 3.4) in which each pixel is the mean of

its corresponding pixel stack.
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3.3.4 Joint Alignment

We apply the {vj}i learned from the JPA process to the extracted structures Ii
f to bring

all the images into alignment in one step.

Ii
a(x) = Ii

f (gi(x)). (3.11)

where 1 ≤ i ≤ N . We show our results in Figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12,

3.13, 3.14, 3.15, 3.16.
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A

B

C

Figure 3.4: Mean shape images from the learning stage.
Mean images from optimization process during JPA for wing discs (first column),
haltere discs (second column), leg discs (third column), eye discs (fourth column):
A: Mean image of Φs before JPA. B: Mean image of Φs after JPA to convergence

with only 3 parameters (tx, ty and θ). C: Mean image of Φs after JPA to
convergence with 7 parameters (Equation (3.9)).

43



Chapter 3. Constructing Atlases of Gene Expression in Drosophila Imaginal Discs

Figure 3.5: Segmented wing discs I i
f before JPA.
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Figure 3.6: Alignment results for wing discs: Segmented wing discs I i
a after applying the

transformations learned by JPA with only 3 parameters (tx, ty and θ).
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Figure 3.7: Alignment results for wing discs: Segmented wing discs I i
a after applying the

transformations learned by JPA with 7 parameters (Equation (3.9)). Note that the third
image was taken with a 10x objective, while the rest were taken with a 20x objective.
The reduced size of the disc is due to the way we captured the image, rather than due to
biological variability. However, the algorithm was able to properly align the image.
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Figure 3.8: Segmented haltere discs I i
f before JPA.
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Figure 3.9: Alignment results for haltere discs: Segmented haltere discs I i
a after applying

the transformations learned by JPA with only 3 parameters (tx, ty and θ).
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Figure 3.10: Alignment results for haltere discs: Segmented haltere discs I i
a after applying

the transformations learned by JPA with 7 parameters (Equation (3.9)).
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Figure 3.11: Segmented leg discs I i
f before JPA.
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Figure 3.12: Alignment results for leg discs: Segmented leg discs I i
a after applying the

transformations learned by JPA with only 3 parameters (tx, ty and θ).
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Figure 3.13: Alignment results for leg discs: Segmented leg discs I i
a after applying the

transformations learned by JPA with 7 parameters (Equation (3.9)).
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Figure 3.14: Segmented eye discs I i
f before JPA.
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Figure 3.15: Alignment results for eye discs: Segmented eye discs I i
a after applying the

transformations learned by JPA with only 3 parameters.
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Figure 3.16: Alignment results for eye discs: Segmented eye discs I i
a after applying the

transformations learned by JPA with 7 parameters (Equation (3.9)).
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3.3.5 Semi-supervised JPA for Aligning Noisy Data

Using the learned shape prior from JPA procedure performed on the manually segmented

disc images (approximately 15-20 examples), we use it as a template into the pipeline

for searching through thousands of new input images to identify and extract instances of

the given imaginal discs. In the automated search and extract stage, the shape model is

geometrically transformed through affine space while searching through the new images,

and recognition procedure is performed as a minimization of distance transform between

the target and the model. Bootstrapping the learned shape prior from unsupervised JPA

stage involving about 15-20 manually segmented disc examples, we can process thousands

of images automatically using this semi-supervised approach. This variation allows a simple

framework for handling partial occlusions and background clutter in the images. The data

flow is illustrated in Figure 3.2. A detailed discussion of this segment of our pipeline can

be found in [Harmon et al., 2007]. Some example results of automatic segmentation and

alignment procedure can be seen in Figures 3.17, 3.18, 3.19.

3.4 Stain Scoring

The local presence of stain results in the appearance of blue in the image; darker blue

suggests a greater local concentration of the gene of interest. However, there is substan-

tial probe-to-probe variability and these intensities should not be relied on as an accurate

quantitative measure of gene concentration. Nevertheless, the different intensity values can

be used to suggest where local gene concentration is high.

We developed a simple semi-quantitative metric that ranges from 0 to 5 where 0 indicates

no expression of the gene of interest and 5 indicates high expression; the presence of blue

stain causes a decrease in the intensities of the red and green channels in an RGB image. In

unstained discs the Nomarski optics yield an imaginal disc image that is generally varying

shades of gray, where the local features and folds of the tissue result in lighter and darker

intensities. The intensities of the red, blue and green channels are generally in the same
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range for a given pixel. We measured the intensity of the blue channel minus the average

of the red and green channels to determine the level of staining. A small baseline value was

subtracted from this number to reduce local noise due to the variability of the intensities

of the channels of unstained images and the resulting value was then thresholded into six

values with the lowest value suggesting no stain and, therefore, no or minimal gene of

interest present, and the highest value suggesting strong expression of the gene of interest.

Examples of segmented, stain-scored wing discs, both unaligned and aligned, can be seen

in Figure 3.20. Notice that the overall shape and size of the discs are more consistent in

the aligned images and that a pixel-wise comparison of stain intensity of biologically similar

patterns would appear more similar when comparing the aligned, stain-scored images than

the unaligned stain-scored images.

3.5 Experimental Results

3.5.1 Consensus Maps of Gene Expression

Using the pipeline described in the previous sections, we have produced maps that represent

the median and standard deviation maps of a given gene in a given imaginal disc tissue across

all the analyzed images. Some examples are shown in Figures 3.21 and 3.22.

3.5.2 Reverse Look-up for Similar Gene Expression Patterns

Since all the images are now aligned to a consistent reference, it is straight forward to use

simple metrics to come up with comparative analysis of various spatial gene expressions to

identify genes that have similar spatial gene expression patterns. Some examples of such

reverse look-up application using Normalized Cross Correlation (NCC) measure are shown

in Figure 3.23.
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3.6 Summary and Conclusions

The proposed overall methodology shown in Figure 3.2 operates without making any as-

sumptions about the underlying structure of a given tissue class. It is semi-supervised

(learning the shape prior is supervised via manually segmented example shapes, and the

rest of the process is automated) and robust to biological clutter and noise in the data.

Clearly, pattern alignment is a critical enabling step in building high-throughput spatial

gene expression atlases. The proposed pipeline is highly amenable to large scale spatial

gene expression analysis and needs no further tweaks from one class of tissue to another

(under the assumption that all supplied images belong to one tissue class). The same frame-

work could also be applicable to construct high-throughput data driven atlases of spatial

expression for other biological or neurobiological substrates. It augments any model-based

registration methods one may choose to apply by supplying the nonparametrically learned

canonical structure model from the given ensemble of images for a given tissue class.

We have developed a method of generating a large number of spatial patterns of gene

expression in Drosophila melanogaster imaginal discs, and for using shapes learned from

the data, rather than using a single exemplar, as a global model of the shape of interest, to

which a set of patterns can be aligned. We successfully implemented and demonstrated the

applicability of this methodology using Drosophila imaginal discs. Using our methods, we

have determined the patterns of over 130 genes in some or all of the four largest and most

well-characterized imaginal disc types, the wing, leg, haltere and eye/antenna discs. Yet,

our characterization of spatial gene expression in Drosophila imaginal discs is not exhaustive

(mainly due to resource constraints related to data collection). Applying our pipeline to

more genes could be potentially informative on a number of levels. Further analysis of

genes known to play a role in the patterning and development of imaginal discs, and the

quantification of the precise extent of spatial expression of these genes may provide a more

detailed view of the roles of and interactions between these important genes.

Using the salient features of our images, we suggested a simple filter-and-threshold

algorithm for segmentation which performs well once the learned shape template is supplied.
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The discussion in this chapter is focused on the geometric transformations that can be

approximated by an affine model in a two-dimensional plane since imaginal discs can be

represented using a two-dimensional representation. One really interesting extension of our

work would be in extending our system to work in the space of non-rigid transformations,

since this could potentially provide a better alignment fit.

Our representation of stain patterns as a quantitative measure of gene expression,

aligned to a global model, enables us to efficiently cluster both the patterns of the genes

themselves, and the regions of the tissues, as represented by the pixels in the global model.

Finally, we have developed a reverse-lookup procedure, that enables us to take a new im-

age, stained for a gene of interest, and to search our database of patterns to find genes with

similar spatial patterns of gene expression. We have also performed detailed comparative

analysis of spatial patterns of gene expression in aligned imaginal discs using pixel-wise

comparisons based on the approaches described in this work. In other datasets where shape

prior is a strong cue, similar approach can be taken. Another natural direction to extend

our approach is to apply this procedure to three-dimensional datasets such as image stacks

from confocal microscopy studies of in situ stained tissues (such as Drosophila embryos) to

construct data-driven gene expression atlases.
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Figure 3.17: Example images of Drosophila melanogaster wing imaginal discs, automati-
cally segmented and aligned to the model. The warping of the target frame is shown via
the warped plane of each of the examples.
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Figure 3.18: Example images of Drosophila melanogaster leg imaginal discs, automatically
segmented and aligned to the model. The warping of the target frame is shown via the
warped plane of each of the examples.
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Figure 3.19: Example images of Drosophila melanogaster eye/antennal imaginal discs,
automatically segmented and aligned to the model. The warping of the target frame is
shown via the warped plane of each of the examples.
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A

B

Figure 3.20: Stain patterns in Drosophila imaginal disc images: unaligned vs. aligned.
A: Unaligned stain-scored wing disc images. B: Aligned stain-scored wing disc images
after JPA. Black pixels have been segmented as background, white indicates no stain
and shades of blue indicate stained pixels. Blue intensity values were calculated from the
semi-quantitative stain scoring algorithm with the lightest blue representing value 1 and
the darkest blue representing value 5. It can be noted that pixel-wise stain count is much
more meaningful in these images. (This image is better viewed in color).
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Figure 3.21: Median Gene expression maps of imaginal discs in Drosophila melanogaster.
The maps are made by taking the median expression value at each pixel from the stack
of images for each gene. (Top row: Maps of MESR3, dpp, drl and CG4914 in the
wing. Second row: Maps of CG9747, nub, dpp and fd96Cb in the leg. Third row:
Maps of Doc2, nub, SP558, and CG9057 in the haltere. Fourth row: Maps of SP1029,
EG : EG0007.7, dpp and btd in the eye/antenna disc).
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Figure 3.22: Gene expression standard deviation maps of imaginal discs in Drosophila
melanogaster. The maps are made by taking the standard deviation at each pixel from
the stack of images for each gene. (Top row: Maps of MESR3, dpp, drl and CG4914
in the wing. Second row: Maps of CG9747, nub, dpp and fd96Cb in the leg. Third
row: Maps of SP558, CG9057, Dr and CG4914 in the haltere. Fourth row: Maps of
SP1029, EG : EG0007.7, btd and Spn43Aa in the eye/antenna disc).
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Figure 3.23: Reverse lookup for insitu555. (a) Original (resized and padded to 256×256
pixels) image inistu555. (b) Automatically aligned, extracted and stain scored insitu555.
The extracted boundary is shown in red and the aligned and scored stain shown in green.
(c) The 5 gene maps that most closely match the stain pattern derived from insitu555
using the NCC distance measure.
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Chapter 4

Joint Random Field Bias Removal in

MRI Images

4.1 Introduction

The central goal of this chapter 1 is to demonstrate the applicability of joint pattern align-

ment framework to the application of random field bias removal in Magnetic Resonance

imaging[Learned-Miller and Ahammad, 2005]. This chapter also demonstrates that JPA

can be extended to model non-geometric transformations such as intensity variations.

Magnetic Resonance (MR) imaging is a powerful noninvasive imaging modality that

has experienced rapid growth over the past decade. Standard applications of MR in-

clude diagnostic imaging studies of the central nervous system and musculo-skeletal system

[Nishimura, 1996]. There are a number of artifacts that can arise in the MR imaging process

and make subsequent analysis very challenging. Possibly the most drastic visual effect is the

intensity inhomogeneity caused by the spatially varying signal response of the electrical coil

that receives the MR signal. This coil inhomogeneity results in a multiplicative gain field

that biases the observed signal from the true underlying signal [Fan, 2003]. This problem is

1This chapter is a more detailed version of [Learned-Miller and Ahammad, 2005], with additional
controlled experiments with BrainWeb data.
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illustrated in Figure 4.1. When a patient is imaged in the MR scanner, the goal is to obtain

an image which is a function solely of the underlying tissue (first image in Figure 4.1).

However, typically the desired anatomical image is corrupted by a multiplicative bias field

(first image in Figure 4.1) that is caused by engineering issues such as imperfections in the

radio frequency coils used to record the MR signal. The result is a corrupted image (first

image in Figure 4.1). Most of the diagnostic MR image processing procedures operate on

Figure 4.1: Illustration of the effect of bias in MR images. On the left is a mid-axial
MRI scan of the human brain with little or no bias field. In the center is a simulated
low-frequency bias field. It has been exaggerated for ease of viewing. On the right is
the result of pixelwise multiplication of the image by the bias field. The goal of MR bias
correction is to recover the low-bias image on the left from the biased image on the right.

the intensity values obtained in MR images. MR images are constructed from electromag-

netic responses and are captured using coils of wire. These intensities are corrupted both

by random noise as well as systematic electromagnetic effects. The latter are collectively

known as bias fields or intensity inhomogeneities. The bias in this case is a multiplicative

bias rather than an additive bias which is more common. The term bias is used because the

intensity inhomogeneity is a systematic effect and not a random effect. Image processing

in general relies on the intensity values and can be significantly impaired by imperfections

in the image collection process. Both the noise and the bias can confuse automated im-

age processing algorithms, and it is highly desirable to minimize both as much as possible.

The goal of MR bias correction is to estimate the uncorrupted image from the corrupted

image. The bias correction problem is currently a challenging one and is very widely stud-

ied. The importance of this problem will increase as MR magnets increase in strength and
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electromagnetic effects become more and more pronounced.

4.1.1 Related Work

A variety of statistical methods have been proposed to address this problem. Wells et

al. [Wells et al., 1996] developed a statistical model using a discrete set of tissues, with

the brightness distribution for each tissue type (in a bias-free image) represented by a one-

dimensional Gaussian distribution. An expectation-maximization (EM) procedure was then

used to simultaneously estimate the bias field, the tissue type, and the residual noise. While

this method works well in many cases, it has several drawbacks:

1. Models must be developed a priori for each type of acquisition (for each different

setting of the MR scanner), for each new area of the body, and for different patient

populations (like infants and adults).

2. Models must be developed from bias-free images, which may be difficult or impossible

to obtain in many cases.

3. The model assumes a fixed number of tissues, which may be inaccurate. For example,

during development of the human brain, there is continuous variability between gray

matter and white matter.

In addition, a discrete tissue model does not handle so-called partial volume effects in which

a pixel represents a combination of several tissue types. This occurs frequently since many

pixels occur at tissue boundaries. Non-parametric approaches have also been suggested,

as for example by Viola [Viola, 1995]. In that work, a non-parametric model of the tissue

was developed from a single image. Using the observation that the entropy of the pixel

brightness distribution for a single image is likely to increase when a bias field is added,

Viola’s method postulates a bias-correction field by minimizing the entropy of the resulting

pixel brightness distribution. This approach addresses several of the problems of fixed-tissue

parametric models, but has its own drawbacks:
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1. The statistical model may be weak, since it is based on data from only a single image.

2. There is no mechanism for distinguishing between certain low-frequency image com-

ponents and a bias field. That is, the method may mistake signal for noise in certain

cases when removal of the true signal reduces the entropy of the brightness distribu-

tion.

We shall show that this is a problem in real medical images. The method we present

overcomes or improves upon problems associated with both of these methods and their

many variations (see, e.g., [Fan, 2003] for recent techniques). It models tissue brightness

non-parametrically, but uses data from multiple images to provide improved distribution

estimates and alleviate the need for bias-free images for making a model. It is also condi-

tional on spatial location, taking advantage of a rich information source ignored in other

methods. Experimental results demonstrate the effectiveness of our method.

4.2 JPA for Bias Removal

4.2.1 The Image Model and Notation

We assume we are given a set I of observed images Ii with 1 ≤ i ≤ N , as shown on the

left side of Figure 4.2. Each of these images is assumed to be the product of some bias-free

image Li and a smooth bias field Bi ∈ Φ. We shall refer to the bias-free images as latent

images (also called intrinsic images by some authors). The set of all latent images shall be

denoted L and the set of unknown bias fields B. Li(·), Bi(·) and Ii(·) can be represented

as maps from R2 to the set R with a domain Ω ⊂ R2:

Li, Bi, Ii : Ω 7→ R. (4.1)

Typically, the domain Ω is a square or rectangular window. Let x ∈ Ω denote the pixel

location such that x = [x, y]T . Using a multiplicative bias model, each observed image can

be written as the product Ii(x) = Li(x) ∗Bi(x), and x ∈ Ω.
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Figure 4.2: Pixel stacks in MR images. On the left are a set of mid-coronal brain images
from eight different infants, showing clear signs of bias fields. A pixel-stack, a collection
of pixels at the same point in each image, is represented by the small square near the
top of each image. Although there are probably no more than two or three tissue types
represented by the pixel-stack, the brightness distribution through the pixel-stack has high
empirical entropy due to the presence of different bias fields in each image. On the right
are a set of images that have been corrected using our bias field removal algorithm. While
the images are still far from identical, the pixel-stack entropies have been reduced by
mapping similar tissues to similar values in an unsupervised fashion, i.e. without knowing
or estimating the tissue types.

Consider again Figure 4.2. A pixel-stack through each image set is shown as the set of

pixels corresponding to a particular location in each image (not necessarily the same tissue

type). Our method operates using the intuition that the pixel-stack values will have lower

entropy when the bias fields have been removed.

The latent image generation model assumes that each pixel is drawn from a fixed dis-

tribution px(·) which gives the probability of each gray value at the the location x in the

image. Furthermore, we assume that all pixels in the latent image are independent, given

the distributions from which they are drawn. It is also assumed that the bias fields for each

image are chosen independently from some fixed distribution over bias fields. Unlike most
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models for this problem which rely on statistical regularities within an image, we take a

completely orthogonal approach by assuming that pixel values are independent given their

image locations, and that pixel-stacks in general will have low entropy when bias fields are

removed.

4.2.2 Problem Formulation

We assume Uniform prior over the basis fields in this derivation, but a different assumption

can as well be used if the user has specific domain knowledge. We formulate the problem as

a maximum a posteriori (MAP) problem, searching for the most probable bias fields given

the set of observed images. Letting Φ represent the product space of smooth bias fields (cor-

responding to the K = 25 basis images of Figure 4.3), we wish to find arg maxB∈ΦP (B|I).

We define Θ̂ as:

Θ̂ = arg maxB∈ΦP (B|I). (4.2)

Using Bayes’ rule and ignoring the constant denominator, we can write it as:

Θ̂ = arg maxB∈ΦP (I|B)P (B). (4.3)

We assume Uniform prior over the basis fields in this derivation. Thus, we can write this

as:

Θ̂ = arg maxB∈ΦP (I|B). (4.4)

Our method can be easily altered to incorporate non-uniform prior as well2. The probability

of an observed image given a particular bias field is the same as the probability of the latent

2Assuming a non-uniform prior will result in a penalized form of ensemble entropy in the opti-
mization objective function. See section 2.2 for details.

72



Chapter 4. Joint Random Field Bias Removal in MRI Images

image associated with that observed image and bias field. This can be expressed as

Θ̂ = arg maxB∈ΦP (L(I, B)) (4.5)

= arg maxB∈Φ

∏
x∈Ω

N∏
i=1

px(Li(x)) (4.6)

Taking logarithm,

Θ̂ = arg maxB∈Φ

∑
x∈Ω

N∑
i=1

px(Li(x)) (4.7)

At each pixel, the empirical mean of the log probability can be approximated with the

negative entropy of the underlying distribution at that pixel. This can be written as:

Θ̂ ≈ arg minB∈Φ

∑
x∈Ω

H(px). (4.8)

Here H is the empirical entropy of the pixel stack (in the case of Shannon entropy, it is

defined as H = Ep(− log px)). We use the entropy estimator of Vasicek [Vasicek, 1976] to

directly estimate this entropy from the samples in the pixel-stack, without ever estimating

the distributions px explicitly. The approximation in Equation (4.8) becomes an equality

as N grows large by the law of large numbers, while the consistency of Vasicek’s entropy

estimator [Beirlant et al., 1997] implies that Equation (4.9) also goes to equality with large

N 3.

Θ̂ ≈ arg minB∈Φ

∑
x∈Ω

ĤV asicek(L1(x), . . . , LN (x)) (4.9)

Θ̂ = arg minB∈Φ

∑
x∈Ω

ĤV asicek(
I1(x)
B1(x)

, . . . ,
IN (x)
BN (x)

). (4.10)

3Please refer to [Beirlant et al., 1997] for a review of entropy estimators.
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This estimation can be formulated as solving an optimization problem. We parameterize

the set of bias fields using the sine/cosine basis images shown in Figure 4.3:

Bi(x) =
K∑
1

vi
jφj(x). (4.11)

where vi are the vectors of bias field parameters (Equation (4.11)). The objective function

Figure 4.3: Sine/Cosine Basis Fields
K = 25 sine/cosine basis fields are shown here, that are combined to construct

band-limited bias fields using Equation (4.11)

74



Chapter 4. Joint Random Field Bias Removal in MRI Images

for our optimization Ψ defined as

Ψ .=
∑
B∈Φ

∑
x∈Ω

ĤV asicek(L1(x), . . . , LN (x)) (4.12)

If the prior on the bias fields is non-uniform, as discussed in Section 2.2, the objective

function will have penalty term that is a function of the logarithm of the prior on vi
j . Ψ is

called the regularized pixel-wise entropy [Learned-Miller and Ahammad, 2005], and since

we assumed a Uniform prior in this case, there is no penalty term in Equation (4.12).

4.2.3 Joint RF Bias Removal Algorithm

Using the ideas discussed so far, it is straightforward to construct an algorithm for joint

bias field removal. We chose to optimize Equation (4.10) over the set of band-limited bias

fields. We optimize Equation (4.10) by simultaneously updating the bias field estimates

(taking a step along the numerical gradient) for each image to reduce the overall entropy.

That is, at time step t, the coefficients vj for each bias field are updated using the latent

image estimates and entropy estimates from time step t − 1. After all the v have been

updated, a new set of latent images and pixel-stack entropies are calculated, and another

gradient step is taken. Though it is possible to do a full gradient descent to convergence

by optimizing one image at a time, the optimization landscape tends to have more local

minima for the last few images in the process. The appeal of our joint gradient descent

method, on the other hand, is that the ensemble of images provides a natural smoothing

of the optimization landscape in the joint process. It is in this sense that our method is

multi-resolution, proceeding from a smooth optimization in the beginning to a sharper one

near the end of the process.

We now summarize the JPA algorithm for estimating the RF bias fields from MR images:

1. Initialize the bias field coefficients for each image to 0, with the exception of the

coefficient for the DC-offset (the constant bias field component), which is initialized

to 1. Initialize the gradient descent step size δ to some value.
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2. Choose an appropriate penalty term in objective function Ψ. Ψ can be computed

based on the probability assumptions made on basis coefficients (P (vi
j)) (See Sec-

tion 2.2 for discussion). For Uniform prior over vi
j , there is no penalty.

3. Compute Ψ for the set of images with initial neutral bias field corrections. (See below

for method of computation.)

4. Iterate the following loop until no further changes occur in the images.

(a) For each image:

i. Calculate the numerical gradient 5viΨ of equation (4.10) with respect to

the bias field coefficients (vj ’s) for the current image.

ii. Set γ = γ − δ 5vi Ψ.

(b) Update δ (according to some reasonable update rule such as the Armijo rule

[Boyd and Vandenberghe, 2004]).

Upon convergence, it is assumed that the entropy has been reduced as much as possible

by changing the bias fields, unless one or more of the gradient descents is stuck in a local

minimum. Empirically, the likelihood of sticking in local minima is dramatically reduced

by increasing the number of images (N) in the optimization. In our experiments described

below with only 21 real infant brains, the algorithm appears to have found a global minimum

of all bias fields, at least to the extent that this can be discerned visually.

4.2.4 Discussion

Note that for a set of identical images, the pixel-stack entropies are not increased by mul-

tiplying each image by the same bias field (since all images will still be the same). More

generally, when images are approximately equivalent, their pixel-stack entropies are not

significantly affected by a common bias field, i.e. one that occurs in all of the images4.

4Actually, multiplying each image by a bias field of small magnitude can artificially reduce the
entropy of a pixel-stack, but this is only the result of the brightness values shrinking toward zero.
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This means that the algorithm cannot, in general, eliminate all bias fields from a set of

images, but can only set all of the bias fields to be equivalent. We refer to any constant

bias field remaining in all of the images after convergence as the residual bias field. For-

tunately, there is an effect that tends to minimize the impact of the residual bias field in

many test cases. In particular, the residual bias field tends to consist of components for

each vj that approximate the mean of that component across images. For example, if half

of the observed images have a positive value for a particular component’s coefficient, and

half have a negative coefficient for that component, the residual bias field will tend to have

a coefficient near zero for that component. Hence, the algorithm naturally eliminates bias

field effects that are non-systematic, i.e. that are not shared across images.

If the same type of bias field component occurs in a majority of the images, then the

algorithm will not remove it, as the component is indistinguishable, under our model, from

the underlying anatomy. In such a case, one could resort to within-image methods to further

reduce the entropy. However, there is a risk that such methods will remove components

that actually represent smooth gradations in the anatomy. This can be seen in the bottom

third of Figure 4.6), and will be discussed in more detail below.

4.3 Experimental Results

To test our algorithm, we ran two sets of experiments, the first on synthetic images for

validation (controlled set-up), and the second on real brain images.

4.3.1 Controlled Experiments with BrainWeb Data

We obtained synthetic brain images from the BrainWeb project [Collins et al., 1998; Bra,

] such as the ones shown in Figure 4.4. The top image is a clean brain phantom with no

bias, and the bottom image is a brain phantom corrupted by some bias field. These images

Such artificial reductions in entropy can be avoided by normalizing each image distribution to unit
variance between iterations of computing its entropy, as is done in this work.
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can be considered idealized MR images in the sense that the brightness values for each

tissue are constant (up to a small amount of manually added isotropic noise). That is, they

contain no bias fields (the left image in Figure 4.4). The initial goal was to ensure that our

algorithm could remove synthetically added bias fields, in which the bias field coefficients

were known. Using N copies of a single latent image, we added known but different bias

fields to each one.

In our experiments, for as few as N = 5 images, we could reliably recover the known

bias field coefficients, up to a fixed offset for each image, to within 1% of the power of the

original bias coefficients. We show the results on BrainWeb synthetic images in Figure 4.5.

As expected, when the bias removal is done, the images look more like each other, since the

latent image among all the images is the same in this experiment.

4.3.2 Experiments with Real Baby Brain Data

More interesting are the results on real images, in which the latent images come from

different patients. We obtained 21 pre-registered 5 infant brain images (top of Figure 4.6)

from Brigham and Women’s Hospital in Boston, Massachusetts. Large bias fields can be

seen in many of the images. Probably the most striking is a ramp-like bias field in the sixth

image of the second row. (The top of the brain is too bright, while the bottom is too dark.)

Because the brain’s white matter is not fully developed in these infant scans, it is difficult to

categorize tissues into a fixed number of classes as is typically done for adult brain images;

hence, these images are not amenable to methods based on specific tissue models developed

for adults (e.g. [Wells et al., 1996]).

The middle third of Figure 4.6 shows the results of our algorithm on the infant brain

images. (These results must be viewed in color on a good monitor to fully appreciate the

results.) While a trained technician can see small imperfections in these images, the results

5It is interesting to note that registration is not strictly necessary for this algorithm to work.
The proposed MAP method works under very broad conditions, the main condition being that the
bias fields do not span the same space as parts of the actual medical images. It is true, however,
that as the latent images become less registered or differ in other ways, that a much larger number
of images is needed to get good estimates of the pixel-stack distributions.
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are remarkably good. All major bias artifacts have been removed.

It is interesting to compare these results to a method that reduces the entropy of each

image individually, without using constraints between images. Using the results of our

algorithm as a starting point, we continued to reduce the entropy of the pixels within each

image (using a method akin to Viola’s method [Viola, 1995]), rather than across images.

These results are shown in the bottom third of Figure 4.6. Carefully comparing the central

brain regions in the middle section of the figure and the bottom section of the figure, one can

see that the butterfly shaped region in the middle of the brain, which represents developing

white matter, has been suppressed in the lower images. This is most likely because the

entropy of the pixels within a particular image can be reduced by increasing the bias field

correction in the central part of the image. In other words, the algorithm strives to make

the image more uniform by removing the bright part in the middle of the image. However,

our algorithm, which compares pixels across images, does not suppress these real structures,

since they occur across images. Hence coupling across images can produce superior results.

4.4 Summary and Conclusions

The idea of minimizing pixelwise entropies to remove nuisance variables from a set of images

is not new. In particular, Learned-Miller et al. [Miller et al., 2000; Miller, 2002] presented

an approach they call congealing in which the sum of pixelwise entropies is minimized

by separate affine transforms applied to each image. Our method can thus be considered

an extension of the congealing process to non-spatial transformations. Combining such

approaches to do registration and bias removal simultaneously, or registration and lighting

rectification of faces, for example, is an obvious direction for future work.

This work uses information unused in other methods, i.e. information across images.

This suggests an iterative scheme in which both types of information, both within and across

images, are used. Local models could be based on weighted neighborhoods of pixels, pixel

cylinders, rather than single pixel-stacks, in sparse data scenarios. For easy bias correction
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problems, such an approach may be overkill, but for difficult problems in bias correction,

where the bias field is difficult to separate from the underlying tissue, as discussed in [Fan,

2003], such an approach could produce critical extra leverage.
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Figure 4.4: BrainWeb Sample Images: Each image shows a different RF bias field super-
imposed on the latent phantom.
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Figure 4.5: Experimental results for BrainWeb Images with different but known bias
fields. Top: Brainweb images before bias removal. Bottom: Brainweb images after bias
removal. NOTE: This image must be viewed in color (preferably on a bright display) for
full effect.
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Figure 4.6: Results for Infant Brain MR image set. NOTE: This image must be viewed
in color (preferably on a bright display) for full effect. Top. Original infant brain images.
Middle. The same images after bias removal with our algorithm. Note that developing
white matter (butterfly-like structures in middle brain) is well-preserved. Bottom. Bias
removal using a single image based algorithm. Notice that white matter structures are
repressed.
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Chapter 5

Characterization of Event Related

Neuronal Activity

5.1 Introduction

The human brain is an amazingly complex structure that plays a central role in our lives.

The multitude of neurons in the outer layer of the human brain function as the active

components in a vast signal processing network. Understanding the communication links

in this network, and determining the functional mapping of brain have been the holy grails

of neuroscience (Figure 5.1).

While evoked potentials reflect the processing of the physical stimulus, event-related

Figure 5.1: Holy grails in neuro science: functional mapping of the brain and understanding
the communication links in brain’s network.
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potentials are caused by the “higher” processes, that might involve memory, expectation,

attention, or changes in the mental state, among others.

Analysis of electric potentials or magnetic fields produced by the brain in response to

sensory stimulation or in association with its cognitive and/or motor operations is critical in

domains such as neurophysiology. These electric or magnetic fields are generated from trans-

membrane current flow produced by multiple ensembles of synchronously firing neurons.

The underlying neural ensembles, also called generators or sources, are often dynamically

coupled in unknown ways that are of interest to the experimentalists.

An event-related potential (ERP) is any stereotyped electrophysiological response to

an internal or external stimulus. In other words, it is any measured brain response that is

directly the result of a thought or perception [Handy, 2004]. In actual recording situations,

it is difficult to quantify an ERP after the presentation of a single stimulus. Rather the

ERPs are determined after many dozens or hundreds of individual presentations are aver-

aged together. This averaging technique aims to filter out noise in the data, allowing only

the voltage response to the stimulus to stand out clearly. Typically, such a simple averaging

procedure does not perform very well. As a result of the property of linear superposition of

electric currents and magnetic fields, both invasive and noninvasive electroencephalographic

(EEG) recordings and magnetoencephallographic (MEG) recordings reflect linear mixtures

of the activity from these sources in addition to ongoing background activity and sensor

noise. Thus even in single-trial recordings, the individual responses of each of the sources

are mixed within the recorded signal, making it difficult to identify them and to study their

dynamical interactions. Furthermore, it is standard practice to enhance the signal-to-noise

ratio by averaging event-related potentials (ERPs) or fields (ERFs) over experimental tri-

als. However, implicit in this construction is the assumption that the evoked waveform is

constant over trials and that any variability represents noise. The phase-locked signal may

have trial-to-trial variability in amplitude and latency and may in fact be the superposition

of multiple components with differential variability in their single trial amplitude scaling

factors and latency shifts. Many ignore this fact and resort to extracting the event-related
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signal as an average across the ensemble of trials, denoted by Averaged Event Related Poten-

tial (AERP). Using AERP makes it impossible to assess trial-dependent effects in the data.

In this chapter, we describe an information theoretic formulation for obtaining a Bayesian

estimate of the canonical response at a given vertex location in cerebral cortex based on the

neuronal response signals recorded across a set of multiple observations (all from a single

trial).

We propose an unsupervised nonparametric learning algorithm (based on joint pattern

alignment framework) to extract the phase-locked component as a MAP estimate given the

set of observed signals. The central goal of this chapter is to discuss how JPA can be applied

in the context of single trial multicomponent estimation of event related potentials (ERP)

in neuroscience domain [Ahammad et al., 2006a; Ahammad et al., 2006b; Vasudevan et al.,

2008].

5.1.1 Measuring Neural Signals

One of the ways of measuring an ERP is via electroencephalography (EEG), a procedure

that measures electrical activity of the brain through the skull and scalp. One of the

most robust features of the ERP response is a response to unpredictable stimuli. This

response-known as the P300 (or simply “P3”)-manifests as a positive deflection in voltage

approximately 300 milliseconds after the stimulus is presented.

When decisions are made or information is processed in cortical network, small currents

flow in the network and produce a weak magnetic field that can be non-invasively measured

through external devices called SQUID (superconducting quantum interference device) mag-

netometers. These SQUIDs are placed outside the human skull and this form of recording

neuronal activity signals is known as magnetoencephallography (MEG) [Hamalainen et al.,

1993]. The time resolution of MEG is better than 1 millisecond, and the spatial discrimina-

tion (under favorable circumstances) is around 2-3 millimeters for sources in cerebral cortex.

State of the art MEG systems usually have around 300 SQUIDs situated around the skull

for measuring the MEG signals. Since the magnetic signals induced by these currents in the
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brain are very weak, shielding from external magnetic signals is necessary. The net currents

can be thought of as current dipoles (known as Equivalent Current Dipoles: ECD) which are

currents defined to have an associated position, orientation, and magnitude, but no spatial

extent. According to the right-hand rule, a current dipole gives rise to a magnetic field

that flows around the axis of its vector component. The magnetic field arising from the net

current dipole of a single neuron is too weak to be directly detected. However the combined

fields from a region of about 50,000 active neurons can give rise to a net magnetic field that

is measurable. Since current dipoles must have similar orientations to generate magnetic

fields that reinforce each other, it is often the layer of pyramidal cells in the cortex, which

are generally perpendicular to its surface, that give rise to measurable magnetic fields.

5.1.2 Challenges in Functional Mapping of Human Brain

Given the measured ERPs, there are some interesting challenges in the way to obtaining

the functional mapping of human brain. One such challenge is: given a certain stimulus, we

would like to understand how the canonical response is at any given vertex in the cortical

network. Canonical response is defined as the underlying response that is common to all

signals in the set of observations at that given vertex location for a given stimulus (in other

words, a template for a given stimulus). The measurements are generally modeled as a

dynamical interaction between signals that are relatively phase-locked to a specific event

onset and signals that are not phase-locked to the event, such as measurement noise or

ongoing brain activity. Once inferred, this canonical phase-locked response signal can be

used as a template to determine which vertices have similar kinds of neuronal responses, and

potentially help establish the communication links between various vertices in the cortical

network. Our proposed algorithm can be used to estimate this canonical response from

multiple observations.
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5.1.3 Related Work

In recent years, there have been great developments in blind source separation and In-

dependent Component Analysis (ICA) techniques, such as Infomax ICA [Bell and Se-

jnowski, 1995], FastICA [Hyvrinen and Oja, 1997], and Second-Order Blind Identifica-

tion (SOBI) [Belouchrani et al., 1993]. These algorithms have been useful in identifying

sources in EEG and MEG signals using both ensemble-averaged data [Makeig et al., 1997;

Vigario et al., 2000] and single trials [Cao et al., 2000; Jung et al., 1999; Makeig et al., 2002;

Tang et al., 2002]. Along with the respective strengths, each technique has its limitations,

and often these limitations can be addressed. ICA, for example, allows reliable source

(component) separation with minimal a priori assumptions and constraints. Its limitation

is that although trial-to-trial variability can assist in separation, these effects are not ex-

plicitly considered and quantified, and these are substantial opportunities missed. Also,

like many other techniques, ICA solves for maximal independence of components, despite

the fact that components are often dynamically coupled. Thus although ICA may be rea-

sonable for source separation per se, it is not explicitly designed to quantify the dynamical

interactions between the neuronal ensembles that generate the components.

Jaskowski et al. present a solution in which the phase-locked signal has the same shape

but may vary in its amplitude and latency from trial to trial [Jaskowski and Verleger, 1999].

The utility of the solution to estimate the P3 component in single trials was investigated

both by extensive pseudo-real simulations and in an application to real data. Their sim-

ulations showed some advantage of the method over two other commonly used methods

(Woody’s method and peak-picking) in event-related potentials research. Quirogaa and

Garcia present a denoising implementation based on the Wavelet Transform to obtain the

ERPs at the single-trial level [Quiroga and Garcia, 2003]. Knuth et al. and Truccolo et al.

describe a model of the sensory-evoked neural response that is more realistic than previous

models in that it explicitly models trial-to-trial amplitude as well as latency variability in

single-trial responses [Knuth et al., 2006; Truccolo et al., 2003]. Using this model, they

derive, what they call, Differentially Variable Component Analysis (dVCA) algorithm, and
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demonstrate how different variability patterns in neural ensemble activity can be used to

separate and identify their component signals. Using simulations, they evaluated not only

the ability of dVCA to characterize single-trial responses, but also its robustness to noise.

While dVCA is more realistic than AERP, it suffers from two shortcomings. First, it re-

quires an a priori knowledge of either the number of components within the phase-locked

signal or of the ratio between the phase-locked and on-going process signals. Second, it as-

sumes that the trial-to-trial variability in amplitude and latency is Gaussian. Our proposed

approach based on JPA for estimating ERP improves upon the state of the art by making

fewer assumptions on the composition of phase-locked ERP signal, and eliminating the need

to have a prioriknowledge of the number of components in phase-locked ERP signal.

5.1.4 Problem Statement

We define the problem of Event Related Potential estimation as: at a chosen vertex location

in cortical network, for a given stimulus, extract the phase-locked ERP signal as a MAP

estimate. No parametric assumptions are made about the ERP signal composition; but

we do impose certain restrictions on the noise that could corrupt the canonical signal.

Intuitively, this is similar to looking at a set of example pictures of apples or faces, and

figuring out what a canonical apple or face looks like by jointly undoing the distortions.

5.2 JPA for Nonparametric Estimation of ERPs

5.2.1 Notation

Let us consider the problem of estimating the ERP signal given an ensemble of neural signal

observations (or recordings) at a given location in brain. We want to derive the objective

function directly from the relevant assumptions (on the p.d.f.’s of the transformation vec-

tors) instead of regularizing in an ad-hoc manner. The following derivation will make a

specific (Gaussian) assumption on the p.d.f.’s of transformation components, but this can
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be changed appropriately depending on the user-preference or prior knowledge.

Let us denote the input set of neural signal observations (or recordings) as ΦS
.= {Si}N

i=1

where N is the cardinality of the set. Let Sl be the latent underlying Event Related Potential

(ERP) that is phase-locked to the stimulus which gets corrupted by variations in latency

and scaling parameters. Sl(·) and Si(·) can be represented as maps from the domain Ω ⊂ R

to the set R:

Sl, S
i : Ω 7→ R. (5.1)

Let t ∈ Ω denote the time-point (in homogeneous coordinates) such that t = [t, 1]T .

Let gi induce the one-to-one and invertible map from Si(t) to Sl(t) such that gi : Ω 7→ Ω.

Thus, for any given time-point t,

Sl(t) = Si(gi(t)). (5.2)

Let us denote the set of transformations associated with the set of observed signals as

Φg
.= {gi}N

i=1 and the set of transformed neural signal observations as ΦSg

.= {Si
g}N

i=1 where

N is the cardinality of the set and Si
g are the transformed signals. Let us parameterize

each transformation gi using scaling (s) and latency (l) as the transform parameters. Let

us assume that the transform parameters are i.i.d. random variables. This can be written

as:

gi(t) = F (t; si, li) (5.3)

gi(t) = F (t; {vi
j}K

j=1) (5.4)

{vi
j}K

j=1 = [si, li] (5.5)

where 1 ≤ i ≤ N , 1 ≤ j ≤ K, (K is the number of parameters chosen - which is 2 in our
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formulation), and v ∈ ZN
+ × RK . Writing g out explicitly, we get:

g =

 es l

0 1

 (5.6)

5.2.2 Problem Formulation

Let us assume that the latent model of the class (Sl) and the set of transformations Φg are

independent. Let vi = {vi
j}K

j=1 and Φv = {vi}N
i=1. Let P (Si|vi

1, ..., v
i
K ;Sl) be some likelihood

function such that,

P (ΦS |Φv;Sl) =
N∏

i=1

P (Si|vi;Sl). (5.7)

Let Θ .= {Sl,Φv}. We would like to infer Θ given the set of neural signal observations ΦS .

Formulating our goal as a Maximum a posteriori (MAP) estimation problem, we want to

estimate Θ by Θ̂ such that

Θ̂ = arg maxSl,Φv
P (Φv|ΦS ;Sl). (5.8)

Using Bayes’ rule and ignoring the constant denominator,

Θ̂ = arg maxSl,Φv
P (ΦS |Φv;Sl)P (Φv). (5.9)

Since we assume that the transformation parameters vi and given neural signal observations

Si are independent,

Θ̂ = arg maxSl,Φv

N∏
i=1

P (Si|vi;Sl)P (vi). (5.10)

Using Equation (5.4), and noting that gi is a bijective map such that gi : Ω 7→ Ω, we can

write:

P (Si|vi;Sl) = P (Si ◦ gi|vi;Sl). (5.11)
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Let us make the assumption that the value of Si(gi(t)) at time-point t is independent of the

other time-point locations. In other words, we assume that the probability distributions of

values at each time-point location are i.i.d. Thus,

P (Si ◦ gi|vi;Sl) =
∏
t∈Ω

P (Si(gi(t))|vi;Sl)

=
∏
t∈Ω

P (Si(gi(t))|vi;Sl(t)). (5.12)

Thus,

N∏
i=1

P (Si|vi;Sl) =
N∏

i=1

∏
t∈Ω

P (Si(gi(t))|vi;Sl(t))

=
∏
t∈Ω

N∏
i=1

P (Si(gi(t))|vi;Sl(t)). (5.13)

Since we assumed that the transformation parameters vi
j are independent,

P (vi) =
K∏

j=1

P (vi
j). (5.14)

Hence,

Θ̂ = arg maxSl,Φv


{∏

t∈Ω

N∏
i=1

P (Si(gi(t))|vi;Sl(t))

}
N∏

i=1

K∏
j=1

P (vi
j)


 . (5.15)

Now, let us assume (in this example) that P (vi
j) has a Gaussian distribution, such that

P (vi
j) = N(vi

j ;µj , σ
2
j ). (5.16)
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Taking logarithm,

Θ̂ = arg maxSl,Φv

∑
t∈Ω

N∑
i=1

log{P (Si(gi(t))|vi;Sl(t))}

+
N∑

i=1

K∑
j=1

log{ 1√
2πσ2

j

exp{−
(vi

j − µj)2

2σ2
j

}}. (5.17)

Let us define α(t) to be the time-point stack in ΦS at location t and αg(t) as the time-point

stack in ΦSg at location t. Since ΦS is a set of neural signal observations, α(t) ∈ RN and

αg(t) ∈ RN . Writing this out explicitly:

αg(t) = [S1(g1(t)), S2(g2(t)), ..., Si(gi(t)), ..., SN (gN (t))]T . (5.18)

Also, define H(αg(t)) as the empirical entropy of the time-point stack αg(t). Noting that

entropy is the expectation of negative log-likelihood, and expanding the logarithm in the

second term (while ignoring the constant),

Θ̂ = arg minSl,Φv

∑
t∈Ω

H(αg(t))−
1
N

N∑
i=1

K∑
j=1

log{σj}+
1
N

N∑
i=1

K∑
j=1

(vi
j − µj)2

2σ2
j

 . (5.19)

If we assume that σj =
√

K,∀j = 1, . . . ,K and ignore the constant term, then

Θ̂ = arg minSl,Φv

{∑
t∈Ω

H(αg(t)) +
N∑

i=1

1
2NK

||vi
j − µj ||22

}
(5.20)

where || · ||22 represents L2-norm. Since we model transformation parameters as the random

variables causing Si(t) to vary from Sl(t), we can see that these two will be the same when

the randomness due to vi is removed.

This Maximum a posteriori (MAP) estimation can be formulated as solving an opti-
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mization problem. The optimization objective function Ψ .= Ψ(Φv) is defined as

Ψ .= {
∑
t∈Ω

H(αg(t)) +
N∑

i=1

1
2K

||vi − v̄i||22} (5.21)

where v ∈ ZN
+ × RK are the vectors of transformation parameters (Equation (5.5)).

The JPA algorithm for the estimation of ERP signal (that is phase-locked to the stim-

ulus) proceeds as follows:

1. Maintain a transform parameter vector vi (Equation (5.5)) for each shape image Si.

2. Initialize all of the transformation matrices gi to the identity matrix. Each parameter

vector will specify a transformation matrix gi = F (vi) according to Equation (5.6).

Initialize all vi to zero vectors. This means µj = 0 for 1 ≤ i ≤ N , 1 ≤ j ≤ K.

3. Choose an appropriate penalty term in Ψ (Equation (5.21)) based on the probability

assumptions made on transformation parameters (Equation (5.16))

4. Compute Ψ for the current set of images from Equation (5.21).

5. Repeat until convergence:

For i = 1, ..., N ,

(a) Calculate the numerical gradient 5viΨ of Equation (2.21) with respect to the

transformation parameters vi
j ’s for the current image (1 ≤ j ≤ K).

(b) Update vi as: vi = vi − γ 5vi Ψ(where the scaling factor γ ∈ R).

(c) Update γ (according to some reasonable update rule such as the Armijo rule

[Boyd and Vandenberghe, 2004]).

Since Ψ(·) is a differentiable function and the level sets

A({ui}N
i=1) =

{
{vi}N

i=1 ∈ RK×N | Ψ({vi}N
i=1) ≤ Ψ({ui}N

i=1)
}

(5.22)
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are bounded for all {ui}N
i=1 ∈ RK×N , then the JPA routine will at least reach an accu-

mulation point such that ∇viΨ = 0 for all i = 1, . . . , N [Polak, 1997], even though the

optimization routine will generally converge to a local minimum. Note that at a local min-

imum the set of neural signal observations ΦS = {Si}N
i=1 are reasonably denoised (if not

perfectly) and the set of transformations {gi}N
i=1 is properly described by the parameters

{vi}N
i=1. Sl is estimated by choosing the medoid of the set of signals, using an appropriate

measure (such as the magnitude of transformation from one signal to another based on the

values of vi. Note that the introduction of a penalty (regularization) function is critical in

achieving the convergence of the optimization routine since this term diverges as the norm

of vi goes to infinity, thus making the level sets of Ψ(·) be bounded.

5.3 Experimental Results

We evaluated the JPA algorithm for estimating the ERP signal using synthetic data to

demonstrate the applicability of our approach under various assumptions on the generator

signal and the noises that corrupt the generator signal. Similar evaluation methodology was

used, by Knuth et al., to evaluate the performance of dVCA algorithm [Knuth et al., 2006].

In our experiments, we use dVCA as the baseline method for comparison. Our controlled

experiments allow us to evaluate the performance of our algorithm in the presence of noise

as well as variability in the assumptions made on generative model.

Several examples of sample observations are illustrated in Figure 5.2. The underlying

signal generator is drawn in red on all plots. The generator signal for the three sub-plots on

the left column contains only two components, while the generator signal for the three sub-

plots on the right column contains five components. The top row models the variations in

latencies and scaling using a Gaussian probability distribution. The middle row models the

variations in latencies and scaling using a Laplacian probability distribution. The bottom

row models the variations in latencies and scaling using a Uniform distribution. Note that

even though the right column is generated by a generator signal with 5 components, it looks
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Figure 5.2: Several examples of sample observations. The underlying signal generator is
drawn in red on all plots. The generator signal for the three sub-plots on the left column
contains only two components, while the generator signal for the three sub-plots on the
right column contains five components. The top row models the variations in latencies and
scaling using a Gaussian probability distribution. The middle row models the variations in
latencies and scaling using a Laplacian probability distribution. The bottom row models
the variations in latencies and scaling using a Uniform distribution.
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as if there are only two components. Since dVCA requires the user to choose the number

of components, it is easy to choose the wrong number of components. JPA does not make

such assumptions, so it is robust the number of components in the generator signal.

We show the results of the JPA algorithm when compared to dVCA in six instances in

the accompanying Figures 5.3. The generator signal is created as a linear combination of a

given number of Gaussian components. Note that this generator signal can be any signal

for our purposes, since JPA does not make any assumptions on the generator signal. On

the other hand, making the correct guess about the number of components in the generator

signal is critical to the success of dVCA algorithm. The underlying signal generator is drawn

in red on all plots. The generator signal for the three sub-plots on the left column contains

only two components, while the generator signal for the 3 sub-plots on the right column

contains 5 components. The top row models the variations in latencies and scaling using a

Gaussian probability distribution. The middle row models the variations in latencies and

scaling using a Laplacian probability distribution. The bottom row models the variations

in latencies and scaling using a Uniform distribution.

In order to quantitatively evaluate the performance of our algorithm, we followed the

paradigm used by [Knuth et al., 2006], and used the root-mean-squared error (RMSE)

measure1. First we wanted to test how JPA performed under several noise assumptions and

varying regularization choices. Following the arguments we made about the importance

of choosing appropriate regularization in JPA (Section 2.2), we expected to see that the

best results for joint alignment occur when the regularization choice matches that of the

assumptions made on the p.d.f. of the transformation parameters.

From Table 5.1 and Table 5.2, one can notice that JPA based multi-component ERP

estimation performs best when L1-regularization is used in conjunction with Laplacian

p.d.f. assumptions on the transformation parameters, while the L2-regularization works

best in conjunction with Gaussian p.d.f. assumptions on the transformation parameters.

We tested this regularizer assumptions under two different SNR regimes (SNR=0 dB, and

1Since we have access to the generator signal, RMSE is straight-forward to compute.
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Figure 5.3: Results for estimating the phase-locked ERP signal. The generator ERP signal
for the three sub-plots on the left column contains only two components, while the gen-
erator ERP signal for the three sub-plots on the right column contains five components.
The top row models the variations in latencies and scaling using a Gaussian probabil-
ity distribution. The middle row models the variations in latencies and scaling using a
Laplacian probability distribution. The bottom row models the variations in latencies and
scaling using a Uniform distribution. Note that even though the right column is generated
by a generator signal with 5 components, it looks as if there are only two components.
Colorcode is given as: Red for Generator ERP signal, Green for AERP, Light blue for
dVCA=2, Pink for dVCA=5 and Blue for JPA.
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Table 5.1: RMSE error rates at SNR= 20 dB: Varying reglurization assumptions

SNR=20dB Gaussian p.d.f. Laplacian p.d.f.

L2-regularizer 0.0277 0.0216
L1-regularizer 0.0416 0.0067

Table 5.2: RMSE error rates at SNR= 0 dB: Varying reglurization assumptions

SNR=0dB Gaussian p.d.f. Laplacian p.d.f.

L2-regularizer 0.1729 0.1719
L1-regularizer 0.1922 0.1564

SNR=20 dB), and we used the RMSE to measure the error of alignment (since we know

the underlying generator signal in these experiments). Please note that SNR stands for

signal-to-noise ratio.

From Table 5.3, it is clear that JPA based multi-component ERP estimation outperforms

the other approaches across a variety of conditions, while making no assumptions on the

structure of the underlying generating signal.

Table 5.3: RMSE error rates for ERP signal estimation

Generator Type JPA dVCA2 dVCA5 AERP

2comp-Gaussian 0.0277 0.0376 0.058 0.0268
2comp-Laplacian 0.0216 0.0269 0.0226 0.0243
2comp-Uniform 0.1843 0.3248 0.2754 0.2007
5comp-Gaussian 0.0009 0.0784 0.014 0.0039
5comp-Laplacian 0.002 0.0318 0.0161 0.0083
5comp-Uniform 0.1971 0.7634 0.6655 0.8004

99



Chapter 5. Characterization of Event Related Neuronal Activity

5.4 Summary and Conclusions

We have proposed a nonparametric approach (based on JPA) for estimating an ERP signal

given an ensemble of observations. We have provided a principled procedure for using the

prior knowledge on the distribution of noise parameters (variations in latency and scaling)

to arrive at the correct form of regularized objective function in the JPA’s optimization

routine. We have compared our algorithm, both qualitatively(Figure 5.3) and quantita-

tively(Table 5.3), with state of art approaches (dVCA and AERP) using various settings

for the number of components in the generator signal, as well as the distributions of noise

parameters.

Our results show that improved estimates of the phase-locked ERP component can be

achieved in a completely unsupervised fashion, without making any parametric assumptions

about the underlying signal. Since the structure of ERP signals recorded from brain are yet

to be well understood, we believe that such a nonparametric approach to estimating ERP

signals would be the least-biased. Note that the assumptions on the distributions of noise

parameters do impose a certain structure on the regularization aspect of JPA, and these

could be considered as a form of a priori knowledge available to the experimentalists, based

on observing many experimental sessions.

Moving forward, we plan to apply our approach to characterize the responses of subjects

in real neuroscience experiments, at various locations in cortical networks. Assuming that an

appropriate metric is available to compare the ERP signals, this could potentially enable

us to establish the communication links across the cortical networks. Ahammad et al.

showed some preliminary demonstrations that a learned set of phase-locked ERP signals

(using JPA) can used in a nearest-neighbor classification scheme to improve classification

rates in a magnetoencephallography (MEG) experiment [Ahammad et al., 2006b]. An

interesting direction for future would be to investigate JPA based generative modeling

based classification approach for signal-to-state conversions (for applications in BCI).
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Chapter 6

Unsupervised Discovery of Action

Hierarchies in Large Video Collections

6.1 Introduction

In this chapter, we focus on the task of learning a meaningful data-driven hierarchical or-

ganizational structure for large collections of videos containing activities. The videos are

unlabeled, and the collections may contain examples from many different classes (cate-

gories). The representation we are attempting to learn (in an unsupervised manner) in

this scenario is the data-driven organizational hierarchy that facilitates the most efficient

retrieval.

Given the growing popularity of online video databases (such as YouTubeTM , Google

VideoTM , Yahoo VideoTM and MSN VideoTM ) and the ease of recording and storing videos,

access to video data is bound to increase. Considering the low storage costs and ease of

acquiring video data, the notion of personalized video databases is not that far from reality.

Even in special scenarios such as surveillance or environmental habitat monitoring where

networks of cameras are deployed, it is typical to record large amounts of video data.

While it is becoming more common for cities to record video data in public places (for
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example, in London, Washington, D.C., New York) , the recorded data typically resides

in archives without much use (either due to some privacy concerns, or operator fatigue

or the lack of technical tools to sift through such large amount of video data). A lot of

interesting details in these video databases are related to dynamic patterns such as actions

of human beings or objects, or to static patterns such as faces. The utility of these video

collections can be immensely improved by the ability to efficiently organize videos using

semantically meaningful cues. In our work, we are focused on video data that contain

actions or movements of human beings or objects. While we are generally interested in all

spatio-temporal patterns in video, human actions are specifically interesting since they are

articulated motions and offer a different set of challenges than rigid body motions.

Our goal is to discover a meaningful data-driven hierarchical organizational structure

for the given large collections of videos containing activities in an unsupervised manner.

We aim to organize based on the similarity or dissimilarity of human actions embedded

within the video clips. The notion of action similarity induces a perceptual hierarchy on

the database of videos (see Figure 6.1 for example). Recalling the example of a library user

attempting to organize an unlabeled collection of books using content based similarity (as

discussed in Section 1.1), we would like to build a system that takes as input a collection of

video clips of human actions, and outputs an organizational structure containing the videos

that respects the content based notion of similarity or dissimilarity between video clips.

Such a system would be very useful in facilitating efficient navigation of the database, thus

improving its utility as well as providing the users with an efficient tool to index the large

database.

6.1.1 Challenges

There are some significant challenges in building such an unsupervised organization system

that we discussed. Firstly, measuring similarity or dissimilarity of the actions of mobile

articulated structures like humans and animals is a very difficult task. In practice, the

rate and the style of actions can be different from person to person. So, the measurement

102



Chapter 6. Unsupervised Discovery of Action Hierarchies in Large Video Collections

Figure 6.1: A qualitative example of an action hierarchy for the activity video collection
ΦX , with associated exemplars for the subtree under each node, shown up to 6 clusters.
This was generated using our proposed approach with NCNC as the action similarity
measure and Ward linkage as the neighbor-joining criterion. The 6 clusters from left to
right: Jogging, Walking, Running, Boxing, Handclapping, Handwaving. See Section 6.3
for further discussion.

of action has to be robust to changes in the rate of actions as well as variations in the

appearance of the individuals due to clothing or lighting variations. While there is significant

amount of work that exists in literature on measuring action similarity, many proposed

approaches make simplifying assumptions that make the approaches unusable in practice. It

is preferable to assume no metadata (e.g. labels), no segmentation and no prior alignment

for the video collections. In other words, we would like the system to simply take the

videos as they are, and work with them without much preprocessing. Since we would like

handle large collections of video clips, ability to organize in a short amount of time is also

a very critical factor. A key point to note here is that in practice, large collections of

videos are always stored in compressed format. So re-using these pre-computed features

from compressed domain representation eliminates the step of feature computation and

thus saves significant amount of time in estimating action similarity. For these reasons

of efficiency, we proposed a similarity measure that uses compressed domain features for

organizing the video collections in our work. Our proposed approach computes the action

similarity directly based on compressed domain features (such as filtered motion vectors

and DCT coefficients) that are pre-computed when the videos are compressed for storage

purposes (Section 6.2.1). We also show that our proposed measure is quite robust with
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respect to parameter settings in video coding as well as being robust to appearance and

rate variations.

A second challenge is to estimate a figure-of-merit that tells us how good our data or-

ganization is, without having access to labels. Relating this situation back to the task of

organizing books in a library without access to labels, we would like to know who orga-

nized the collection in the best way if there were a few different choices of organizational

structure available, depending on the user who performed the task. In our approach, we

use agglomerative hierarchical clustering for the purposes of building the hierarchy - and it

is well known that different choices of neighbor-joining criteria result in different estimated

hierarchies (Section 6.2.3). Let us assume that each neighbor-joining criterion represents

one user who performed the organization. Our task is to assign a figure-of-merit to each es-

timated hierarchy so that we can rank the possible choices. While estimating this goodness

measure (or figure-of-merit) for organizational structures is straight-forward in the super-

vised scenario 1, it is not clear how the quality of the database organization can be judged

in the absence of labels. Lack of labels, or prototypical examples, or metadata makes this

task quite hard. One also has to remember that the number of groups may not be known

a priori, and different end-users might want the database to be divided up into different

number of groups. Assuming availability of labels (or metadata) for large video collections

is impractical in practice, so this is a key practical issue. We propose a solution to this

problem by computing a performance measure on the estimated hierarchy (Section 6.2.4).

The main insight in our solution is to note that, for a good organizational hierarchy, the

cophenetic distances computed during the agglomeration should obey the input pair-wise

distance relationships estimated from pair-wise action distances 2 [Rohlf and Fisher, 1968].

1One can easily evaluate the goodness of the organization based on the labels of the data samples
and the groups they end up in - assuming the availability of labels or metadata.

2In our work, the pair-wise action distances are measured using our robust compressed domain
action similarity approach.
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6.1.2 Problem Statement

Given a set of videos and a user-defined space-time scale of actions, we would like the system

to: (a) automatically and efficiently organize the videos into a hierarchy based on action

similarity; (b) estimate clusters; (c) compute a performance measure on the estimated

hierarchy (even without access to the labels); and (d) select one representative exemplar

for each cluster.

6.1.3 Related Work

Any practical system that records and stores digital video is likely to employ video com-

pression such as H.263+ [Cote et al., 1998] or H.264 [Wiegand et al., 2003]. It has long been

recognized that some of the video processing for compression can be reused in video analy-

sis or transcoding; this has been an area of active research (see for example [Chang, 1995;

Wee et al., 2002]) in the last decade or so. For large databases of videos, techniques that op-

erate directly on compressed domain features are more suitable since they offer a significant

speed-up in processing time.

Typically, example based query systems operate by assigning a similarity (or dissimi-

larity) score to each target video based on the example video [Shechtman and Irani, 2005;

Yeo et al., 2006; Yeo et al., 2008]. These scores are not always metrics, so one needs to

find ways to convert these scores into meaningful metrics in order to perform unsupervised

grouping.

There has been much prior work in human action recognition; an excellent review of

such methods has been presented by Aggarwal and Cai [Aggarwal and Cai, 1997]. We

are interested in approaches that work on video without relying on capturing or labeling

body landmark points (see [Yilmaz and Shah, 2005; Parameswaran and Chellappa, 2005]

for recent examples of the latter approach). Efros et al. [Efros et al., 2003] require the

extraction of a stabilized image sequence before using a rectified optical flow based nor-

malized correlation measure for measuring similarity. Our motion similarity measure uses

some key ideas from their work, while choosing to operate in compressed domain instead
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of the pixel domain. Shechtman and Irani [Shechtman and Irani, 2005] exhaustively test

motion-consistency between small space-time (ST) image intensity patches to compute a

correlation measure between a query video and a test video. While their method is highly

computationally intensive, they are able to detect multiple actions (similar or different)

in the test video and also perform localization in both space and time. Laptev and Lin-

deberg [Laptev and Lindeberg, 2003] adopted a local feature based approach. Schüldt

et al. [Schüldt et al., 2004] propose an approach based on local ST features [Laptev and

Lindeberg, 2003] in which Support Vector Machines (SVM) are used to classify actions in

a large database of action videos that they collected. Dollar et al. [Dollar et al., 2005]

adopt a similar approach, but introduce a different spatio-temporal feature detector which

they claim can find more feature points. Ke et al. [Ke et al., 2005] also use an image

intensity based approach, but apply boosting to ST volumetric features computed from

image intensity. Since this approach does not output any measure of motion similarity

or dissimilarity, despite its speed, it is not well suited for unsupervised organization of

large action databases. Since these three methods ([Schüldt et al., 2004; Ke et al., 2005;

Dollar et al., 2005]) only accounts for motion implicitly through the use of image intensity,

it is also not clear how appearance-invariant these methods really are.

We review the prior work in action recognition and/or video retrieval in the compressed

domain, while noting that methods that simply perform classification or detection with-

out computing a similarity or dissimilarity measure are not well-suited for building un-

supervised organizational hierarchies across large databases. Dimitrova et al. [Dimitrova

and Golshani, 1994] assume that motion vectors are coarse approximations of optical flow

but unlike our approach, they estimate object trajectories explicitly using motion vectors.

Chang et al. assume that objects can be segmented and tracked easily in order to com-

pute features [Chang et al., 1998]. Some approaches segment a single video into shots

and organize neighboring shots into a hierarchy for browsing the video but they do not

build action based hierarchies across a large collection of videos [Yeung and Liu, 1995;

Ngo et al., 2002]. Sahouria et. al. compute principal components of the motion vectors as
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low-dimensional representations of videos to classify sports videos into different classes of

sports [Sahouria and Zakhor, 1999]. While this approach might work well for scene analysis,

recognizing or categorizing articulated motions (such as human motions) may be difficult

using this approach. Ozer et al. [Ozer et al., 2000] applied Principal Component Analysis

(PCA) on motion vectors from segmented body parts for dimensionality reduction before

classification. They require that the sequences must have a fixed number of frames and

be temporally aligned. Babu et al. [Babu et al., 2002] trained a Hidden Markov Model

(HMM) to classify each action, where the emission is a codeword based on the histogram

of motion vector components of the whole frame. In later work [Babu and Ramakrishnan,

2003], they extracted Motion History Image (MHI) and Motion Flow History (MFH) [Davis

and Bobick, 1997] from compressed domain features, before computing global measures for

classification.

Since we would like to build a system that can organize large collections of activity

videos, one of the key requirements is the ability to quickly localize and recognize actions. In

our previous work [Yeo et al., 2006; Yeo et al., 2008], we used the motion vector information

to compute motion similarity between a query video and a target video with a similarity

measure that takes into account differences in both orientation and magnitude of motion

vectors. Shechtman et al.’s approach for estimating action similarity [Shechtman and Irani,

2005] is computationally complex compared to our method and may be unsuitable for use in

organizing large video databases. Babu et al. [Babu et al., 2002] use codewords based on the

histogram of motion vector components of the whole frame; this approach requires some

preprocessing of the motion vector components into appropriate feature representation,

followed by trained a Hidden Markov Model (HMM) for classification. Our approach to

computing motion similarity is significantly simpler in comparison, and hence it results in

better overall efficiency for estimating all pairwise distances across data points.
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6.2 Proposed Approach

Let ΦX
.= {Xp}P

p=1 be the given set of videos, where P ∈ Z+ is the cardinality of the set,

and let Ñ × M̃ × T̃ be the user-specified space-time scale of interest. Each video Xp has

an action label yp ∈ {1, ..,K}, where K is the number of actions in the collection. Assume

that Xp is a video with T p frames, with each frame containing Np ×Mp macroblocks. We

assume that an action induces a motion field that can be observed as a spatio-temporal

pattern; let ~V p be the spatio-temporal pattern (motion field) associated with video Xp.

Furthermore, ~V p
n,m(i) = [V p,u

n,m(i) V p,v
n,m(i)] denotes the motion vector at location (n, m)

in frame i of Xp. We assume that similar actions will induce similar motion fields - i.e.,

yp = yq ⇐⇒ D(Xp, Xq) < γ for some acceptance threshold γ, where D(·) is the distance

metric defined between the videos based on their motion fields (defined in Section 6.2.2).

We will use (u)+ as a shorthand for max(0, u).

Figure 6.2 shows the flow of our algorithm for organizing the videos (ΦX) with minimal

user input. Each of the steps shown in the figure is explained in the following sections. For

an extensive discussion on the intuition behind the steps involved in computation of action

similarity, please refer to [Yeo et al., 2008].

1. Compute pair-wise action distances between videos using chosen similarity measure

ρ(·, ·) on coarse optical flows estimated from given videos.

2. Perform hierarchical agglomerative clustering on videos using the computed pair-wise

distances Dsim(·, ·) and an appropriate neighbor-joining criterion.

3. Stop agglomerative process either when the remaining clusters are too far apart to be

merged (distance criterion) or when number of clusters reaches a user-defined limit

(number criterion).

4. Choose a representative exemplar for each cluster.

5. Evaluate the clustering performance using the pair-wise distance matrix Dsim and the

cophenetic distances Dcoph derived from the hierarchy.
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Figure 6.2: Data flow for our proposed approach: Given a set of videos ΦX and a user-
defined space-time scale for actions, we compute pair-wise action similarity scores between
all pairs of videos, and then convert them to symmetric action distances, Dsim. We
use Dsim in hierarchical agglomerative clustering to produce a dendrogram, which is a
binary hierarchical tree representing the videos, and the pair-wise cophenetic distances
Dcoph, which are distances computed from the constructed dendrogram. The cophenetic
correlation coefficient, Θ, is the correlation coefficient between Dsim and Dcoph, and can
be used to evaluate the goodness of the hierarchy.

109



Chapter 6. Unsupervised Discovery of Action Hierarchies in Large Video Collections

6.2.1 Computation of efficient pair-wise action similarity scores

In order to compute non-symmetric pair-wise action similarity scores between Xtest and

Xquery, we carry out the following steps [Yeo et al., 2008] as illustrated in Figure 6.3:

1. Obtain the motion field estimate, ~V , for a video X from its compressed-domain

motion vectors, keeping only the reliable estimates as indicated by a confidence map

computed from DCT AC coefficients [Coimbra and Davies, 2005]. Motion vectors

have been found to be a coarse but reasonable estimate of the motion field, and using

them allows our approach to be computationally efficient.

2. At a particular macroblock location (n, m) of the test video, compute the frame-to-

frame motion similarity measure, S̃n,m(i, j), between the ith test video frame and

the jthth query video frame (cropped to Ñ × M̃ macroblocks). In our experiments,

we used two methods to compute S̃n,m(i, j): Normalized Correlation between Non-

negative motion Channels (NCNC), and Non-Zero Motion block Similarity (NZMS)

(discussion follows).

3. To enforce temporal consistency of the similarity between Xtest and Xquery, we con-

volve S̃n,m(i, j) with a smoothing kernel Hα ∈ RT×T . The resultant aggregated

similarity matrix is Sn,m(i, j) = (S̃n,m ?Hα)(i, j)3. α is a parameter that allows us to

control how tolerant we are to different action rates [Yeo et al., 2008].

4. After repeating the above two steps over space and time (see Figure 6.4), we compute

a confidence score which tells us how likely the action in the query video is occurring at

the (n, m) macroblock of test video frame i by taking the maximum of the aggregated

similarity matrix over a space-time window:

C(n, m, i) = max
max(i−T

2
,0)≤k≤min(i+T

2
,T test−1)

0≤j≤T̃−1

Sn,m(k, j) (6.1)

3Note that the convolution is performed separately for each (n, m), and is only over the (i, j)
frame indices.
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Figure 6.3: Flow chart of action recognition and localization method: Optical flow in the
query and test videos are first estimated from motion vector information. Next, frame-
to-frame motion similarity is computed between all frames of the query and test videos.
The motion similarities are then aggregated over a series of frames to enforce temporal
consistency. To localize, these steps are repeated over all possible space-time locations.
If an overall similarity score between the query and test videos is desired, a final step is
performed with the confidence scores.
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Figure 6.4: Illustration of space-time localization and similarity score computation: The
query video space-time patch is shifted over the entire space-time volume of the input
video, and the similarity, C(n, m, i) is computed for each space-time location.

5. Compute the similarity, ρ(Xtest, Xquery), of the test video to the query video by:

ρ(Xtest, Xquery) =
∑T test−1

i=0 η(i) (maxn,m C(n, m, i))∑T test−1
i=0 η(i)

(6.2)

where η(i) is an indicator function which returns one if at least T frames in the 2T -

length temporal neighborhood centered at frame i have significant motion and returns

zero otherwise. A frame is asserted to have significant motion if at least δ proportion

of the macroblocks have reliable motion vectors of magnitude greater than ε.

In our experiments, we used α = 2.0, Ñ = M̃ = 6, T = 17, T̃ = 2T + 1 = 35, δ = 1
30 and

ε = 0.5 pixels/frame.

Let us elaborate on the methods for computing S̃n,m(i, j):

6.2.1.1 Normalized Correlation between Non-negative motion Channels

To compute Normalized Correlation between Non-negative motion Channels (NCNC), each

~Vn,m is first split into non-negative motion channels (e.g. left, right, up and down) [Efros et

al., 2003; Yeo et al., 2008]. An Ñ × M̃ patch of these motion channels with top-left corner

at (n, m) is stacked into a single vector ~Un,m ∈ R4ÑM̃ . S̃NCNC
n,m (i, j) is then computed as
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follows:

S̃NCNC
n,m (i, j) =

〈~U test
n,m(i), ~Uquery(j)〉

‖~U test
n,m(i)‖‖~Uquery(j)‖

(6.3)

6.2.1.2 Non-Zero Motion block Similarity (NZMS)

S̃NZMS
n,m (i, j) is computed as follows [Yeo et al., 2008]:

S̃NZMS
n,m (i, j) =

1
Zn,m(i, j)

Ñ−1∑
k=0

M̃−1∑
l=0

f(~V test
k+n,l+m(i), ~V query

k,l (j)) (6.4)

f( ~V1, ~V2) =


(〈 ~V1, ~V2〉)+

max(‖~V2‖2,‖~V1‖2)
if ‖ ~V1‖ > 0 and ‖ ~V2‖ > 0

0 otherwise.
(6.5)

The normalizing factor, Zn,m(i, j), in (6.4) is:

Zn,m(i, j) =
Ñ−1∑
k=0

M̃−1∑
l=0

I
[
‖~V test

k+n,l+m(i)‖ > 0 or

‖~V query
k,l (j)‖ > 0

] (6.6)

6.2.2 Computation of pair-wise action distances

Using the similarity scores computed from Section 6.2.1, we compute the pair-wise sym-

metric action distances for videos Xp and Xq as follows:

Dsim(Xp, Xq) =
1

max
(

1
2 (ρ(Xp, Xq) + ρ(Xq, Xp)) , β

) (6.7)

where β represents the smallest value of ρ(., .) admissible. In our experiments, we choose

β = 0.01.
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6.2.3 Hierarchical agglomerative clustering of actions

We apply hierarchical agglomerative clustering (HAC) [Webb, 1999] to construct a binary

tree (also called dendrogram) containing all the elements of ΦX as leaf nodes. Divisive

methods (e.g. K-means, K-medoids) for constructing dendrogram are usually sensitive to

initialization [Webb, 1999]. To address this sensitivity with divisive methods, typically

one needs to perform many randomly initialized trials in order to obtain a good clustering

solution, thus resulting in loss of computational efficiency. In contrast, HAC constructs the

dendrogram in a sequential and deterministic fashion using a neighbor-joining (also called

linkage) criterion. We use four different linkage criteria in our experiments: Single linkage,

Complete linkage, Average linkage and Ward linkage [Hair et al., 1995].

6.2.3.1 Linkage Criteria

Single linkage method uses minimum distance between the clusters as the merging crite-

rion, where distance between clusters is defined as the distance between closest pair of

elements(one element drawn from each cluster) [Hair et al., 1995]. Pairs consisting of one

element from each cluster are used in the calculation. The first cluster is formed by merging

the two groups with the shortest distance. Then the next smallest distance is found between

all of the clusters. The two clusters corresponding to the smallest distance are then merged.

The merging process for complete linkage method is similar to single linkage, but the merg-

ing criterion is different: the distance between clusters is defined as the distance between

most distant pair of elements(one element drawn from each cluster) [Hair et al., 1995]. The

merging process for average linkage method is similar to single or complete linkage, but the

merging criterion is the average distance between all pairs, where one element of the pair

comes from each cluster [Hair et al., 1995]. The distance between two clusters in Ward’s

linkage method is defined as the incremental sum of the squares between two clusters [Hair

et al., 1995].

The user defines a stopping condition for the agglomeration, Lstop, which is the farthest

allowable merging distance between clusters. Lstop is used to cut the dendrogram at an
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appropriate level and obtain the clusters. After computing the matrix of pair-wise action

distances Dsim ∈ RP×P as described in Section 6.2.2, we apply HAC to obtain the hierarchy.

The cophenetic distance between videos Xp and Xq, Dcoph(Xp, Xq), computed in the HAC

procedure, is their linkage distance when first merged into the same cluster [Webb, 1999].

Algorithm 1: Hierarchical Agglomerative Clustering

Input: Dsim, Kstop OR Lstop

Output: clustering tree formed, Kfinal

Initialize: t = 0, K0 = P (i.e. each video Xp is one cluster) , compute L0(·, ·);
repeat

Find (k, l) = arg mini,j Lt(i, j), Lt
merge = Lt(k, l);

if (Kt < Kstop) AND (Lt
merge ≤ Lstop) then,

end
break;
Merge cluster k and l;
Increment t, Kt = Kt−1 − 1;
Update Lt(·, ·) for the new clustering;

until (Kt > Kstop) OR (Lt
merge < Lstop) ;

Kfinal = Kt;

6.2.4 Measuring the goodness of the estimated hierarchy

Different choices in clustering parameters, such as distance metric or linkage criteria, lead to

different hierarchies (dendrograms). For a good hierarchy, the cophenetic distances, Dcoph,

should obey the input pair-wise distance relationships specified by Dsim [Rohlf and Fisher,

1968]. By measuring how well Dcoph satisfies pair-wise distance relationships specified by

Dsim, we can estimate the goodness of the clustering performance. The Cophenetic Cor-

relation Coefficient, Θ ∈ [0, 1], for a dendrogram is defined as the correlation coefficient

between Dcoph obtained from the dendrogram, and Dsim used to construct the dendrogram

[S.Farris, 1969]. Thus Θ is a measure of how faithfully the dendrogram represents the dis-

similarities among videos in the given set ΦX ; its magnitude should be close to 1 for a

high-quality solution. Θ is useful in comparing alternative dendrograms obtained by using
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different neighbor joining strategies.

6.3 Experimental Results and Discussion

We use a publicly available4 comprehensive dataset compiled by [Schüldt et al., 2004] to

perform our evaluations. This dataset consists of different actions (boxing, handclapping,

handwaving, running, jogging and walking) performed by 25 different people over 4 different

environments (outdoors [d1], outdoors with scale variations [d2], outdoors with different

clothes [d3] and indoors [d4]). Since the two similarity measures we used are not designed

for scale-varying actions, we considered only the three non-scale-varying environments.

6.3.1 Action Classification Performance

In order for the proposed organization scheme to be robust to various nuisance factors

such as action variations across people or appearance variations, we must make sure that

the action matching component must be robust first. We have performed classification

experiments to verify the goodness of the compressed domain action recognition algorithm

used in our approach. Our results demonstrate that our approach is robust to noise in

motion vector estimates (Section 6.3.1.1), person-to-person variations in the rate of actions

(Section 6.3.1.2), as well as significant background clutter in videos (Section 6.3.1.3).

To evaluate performance within each environment, we perform a leave-one-out full-fold

cross-validation, i.e. to classify each video in the dataset, we use the remaining videos that

are not of the same human subject as the training set. This will improve the statistical

significance of our results given the limited number of videos in the dataset. To perform

classification, we simply use Nearest Neighbor Classification (NNC) by evaluating the video

action similarity score with each of the videos in the training set.

The action classification confusion matrix for our algorithm when using NZMS is shown

in Table 6.1, while that using NCNC [Efros et al., 2003] is shown in Table 6.2. Each

4http://www.nada.kth.se/cvap/actions/
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Table 6.1: Confusion matrix using NZMS

Box Hc Hw Run Jog Walk

Boxing 0.86 0.07 0.05 0.00 0.00 0.01
Handclapping 0.03 0.89 0.08 0.00 0.00 0.00
Handwaving 0.00 0.04 0.96 0.00 0.00 0.00

Running 0.00 0.00 0.00 0.79 0.21 0.00
Jogging 0.00 0.00 0.00 0.01 0.97 0.01
Walking 0.00 0.00 0.00 0.00 0.07 0.93

Table 6.2: Confusion matrix using normalized correlation (NCNC)

Box Hc Hw Run Jog Walk

Boxing 0.86 0.00 0.01 0.00 0.00 0.12
Handclapping 0.43 0.32 0.24 0.00 0.00 0.00
Handwaving 0.01 0.01 0.97 0.00 0.00 0.00

Running 0.00 0.00 0.00 0.97 0.03 0.00
Jogging 0.00 0.00 0.00 0.21 0.79 0.00
Walking 0.00 0.00 0.00 0.00 0.61 0.39

entry of the matrix gives the fraction of videos of the action corresponding to its row

that were classified as an action corresponding to the column. Our overall percentage

of correct classification is 90%. As a comparison against state of the art methods that

work in the pixel domain, we note here for reference that Schüldt et al. [Schüldt et al.,

2004], Dollar et al. [Dollar et al., 2005] and Ke et al. [Ke et al., 2005] report classification

accuracies of 72%, 81% and 63% respectively on the same dataset. While the methodology

and classification methods used in these works differ, our results compare very favorably on

the same benchmark dataset, even though we use compressed domain features and a very

simple classifier.

Using NZMS, most of the confusion is between “Running” and “Jogging”, with a sig-

nificant proportion of “Jogging” videos being erroneously classified as “Running”. Looking
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Table 6.3: Classification performance with and without thresholding confidence map

Method
With

thresholding
Without

thresholding

NZMS 90.0% 81.2%
NCNC 71.7% 72.5%

at the actual videos visually, we found it hard to distinguish between some “Running” and

“Jogging” actions. In fact, there are certain cases where the speed of one subject in a

“Jogging” video is faster than the speed of another subject in a “Running” video.

6.3.1.1 Robustness to Noisy Estimates of Motion Vectors

Table 6.3 shows the effects of the reliability of motion vectors on action classification per-

formance using our proposed approach. By removing noisy estimates of the optical flow,

we are able to achieve a 10% gain in classification performance. Since motion vectors are

generally noisy, these results demonstrate that our method of comparing actions is robust

to the imperfections in motion vector estimates.

6.3.1.2 Robustness to Variations in Action Rates

To understand the effect of α on classification, we ran an experiment using NZMS with

varying values of α. Table 6.4 shows the results of this experiment. We see that the classi-

fication performance is relatively stable over a range of α. This shows that the aggregation

step described in Section 6.2.1 is critical for action classification, and provides robustness

against person-to-person variability in rates at which people perform various actions. Our

results demonstrate that our approach is robust to person-to-person variations in the rate

of actions.
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Table 6.4: Classification performance with varying α

α Classification performance

1.0 88.2%
2.0 90.0%
3.0 91.0%
4.0 90.8%

No aggregation 62.5%

6.3.1.3 Robustness to Background Clutter

Figure 6.5 shows an example (the “beach” test sequence and walking query sequence from

Shechtman and Irani [Shechtman and Irani, 2005]) which we used as a test case to evaluate

the robustness of our action similarity measure in the presence of significant background

clutter, with respect to the state of art ([Shechtman and Irani, 2005])). In the test sequence,

there are both static background clutter, such as people sitting and standing on the beach,

and dynamic background clutter, such as sea waves and a fluttering umbrella. Since both

these methods (our method and [Shechtman and Irani, 2005]) can also localize actions

within space-time, they are quite robust to background clutter, and give a more accurate

estimate of the action similarity based on embedded actions.

6.3.1.4 Computational costs of pairwise similarity computation

On a Pentium-4 2.6 GHz machine with 1 GB of RAM, it took just under 11 seconds to

process a test video of 368× 184 pixels with 835 frames on a query video that is of 80× 64

pixels with 23 frames. We extrapolated the timing reported in [Shechtman and Irani, 2005]

to this case; it would have taken about 11 hours. If their multi-grid search was adopted, it

would still have taken about 22 minutes. Our method is able to perform the localization,

albeit with a coarser spatial resolution, up to 3 orders of magnitude faster. On the database

compiled in [Schüldt et al., 2004], each video has a spatial resolution of 160×120 pixels, and

has an average of about 480 frames. For each environment, we would need to perform 22500

cross-comparisons across the dataset. Yet, each run took an average of about 8 hours. In
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(a)

(b) (c)

(d) (e)

Figure 6.5: Evaluating the robustness to background clutter: The false color in (d) and
(e) denotes detection responses, with blue and red indicating a low and high response
respectively. (a) A frame from the query video, (b) An input video frame with one person
walking, (c) An input video frame with two people walking, (d) Detection of one person
walking, (e) Detection of two people walking. Our method’s ability to localize allows us to
only compute the action similarity at the precise space-time location where target action
is situated, hence making our approach robust to background clutter.
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contrast, [Shechtman and Irani, 2005] would have taken an extrapolated run time of 3 years.

These results demonstrate that our approach is well-suited for organizing large databases

of action videos.

6.3.2 Estimating Organizational Structure

From each action video, we create a query video by cropping out a space-time volume in an

automatic fashion. Since automatic determination of space-time scale is very hard, we let

the user specify the size of an approximate space-time bounding box, Ñ × M̃ macroblocks

by T̃ frames, for the entire collection of videos5. The system then looks in each action video

for a M̃ × Ñ × T̃ space-time volume that contains the most number of significant motion

vectors, where ~V is significant if ‖~V ‖ > ε (as defined in Section 6.2.1).

We adopt two different criteria for evaluating the performance of our organization

scheme. The first is based on the ability of the hierarchy to infer meaningful exemplars

from the dataset and the second is based on the F-score [Larsen and Aone, 1999] used in

information-retrieval literature.

6.3.2.1 Inferring action exemplars

In each cluster, an exemplar is defined as the element that has the minimum pair-wise

distance with respect to all the other elements in the cluster. A meaningful hierarchy would

organize the videos in such a way that exemplars from each cluster would represent a distinct

action from the dataset. In Figure 6.1, we show the estimated action hierarchy constructed

using NCNC action similarity measure with Ward linkage neighbor-joining criterion. Notice

that the actions such as running, walking and jogging were grouped separately compared

to actions such as boxing, handwaving or handclapping. Intuitively, this fits well with what

a human operator would do given the same task. Among the 4 linkage criteria we used,

we found qualitatively that the combination of NCNC and Ward linkage gives the best

5This implicitly constrains the system to consider actions of approximately similar space-time
scale.
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Table 6.5: F1 scores for different environments and clustering methods

Environment
NZMS /

HAC Ward
NCNC /

HAC Ward
NZMS /

K-medoids
NCNC /

K-medoids

d1 0.7384 0.8496 0.8089 0.7514
d3 0.7220 0.6659 0.7122 0.6480
d4 0.7774 0.7614 0.7515 0.6601

inference for exemplars of actions in the database.

6.3.2.2 Evaluating retrieval performance

As discussed in Section 1.1, one of the key utilities of a well-organized database is that

it allows efficient retrieval. We adopt Balanced F-score [Larsen and Aone, 1999] from

information-retrieval literature for evaluating the goodness of hierarchies estimated in our

approach. Treating the action video Xp (with label yp and in cluster Cp ∈ {1, · · · ,K}) as

a query video, we define the following:

1. Np
1 is the number of videos in cluster Cp with label yp,

2. Np
2 is the number of videos in cluster Cp,

3. Np
3 is the number of videos in ΦX with label yp.

For the query video Xp, we compute precision as Prp = Np
1 /Np

2 and its recall as Rcp =

Np
1 /Np

3 . The Balanced F-score [Larsen and Aone, 1999], F p
1 , for this query is the harmonic

mean of its precision and recall : F p
1 = 2·Prp·Rcp

Prp+Rcp . We average F p
1 to get F1 =

∑P
p=1 F p

1

P .

Since the labels in our dataset are for six actions, for the purpose of making comparisons,

we only consider F1 using a value of Lstop such that the number of estimated clusters is

6. We also compute Θ as described in Section 6.2.4. Figure 6.6 shows the variation of

F1 with Θ for different neighbor joining criteria and action environments. The correlation

coefficient between F1 and Θ is 0.77 for NZMS and 0.73 for NCNC respectively - suggesting

that Θ can be used to predict clustering performance across various linkage criteria even
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Figure 6.6: Plots (top: NZMS, bottom: NCNC) showing positive correlation between
Cophenetic Correlation Coefficient (Θ) and the Balanced F-score (F1), suggesting that
the goodness of hierarchy correlates well with clustering performance.

in the absence of labels. We also compare F1 scores of our proposed approach with those

of a baseline clustering scheme, K-medoids [Webb, 1999], with K = 6. We run K-medoids

with 200 different random initializations and pick the best F1 score over all the runs. Due

to space constraints, we show only results for HAC using Ward linkage and K-medoids in

Table 6.5. It is clear from the results that HAC almost always gives favorable clustering

results, without any initialization issues while efficiently producing a useful hierarchy.

6.4 Conclusions

We have demonstrated an efficient unsupervised approach for organizing large collections of

videos into a meaningful hierarchy based on the similarity of actions embedded in the videos

[Ahammad et al., 2007]. By using a fast compressed domain action similarity measure, our

method can efficiently operate on large databases of activity videos. Our results show that

our method is robust to noise in estimates of motion vectors, significant background clutter

and variations in appearance as well as rates of actions across people.

Based on the evidence of high correlation between Θ and F1 for a given Dsim, we
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conjecture that the unsupervised hierarchical solution for actions that has high Θ would also

be a solution with high F1, thus hinting at good clustering and efficient retrieval performance.

Clearly, the figure-of-merit we proposed may not be the only or the most optimal measure

for measuring the goodness of estimated hierarchy. This is a direction we plan to investigate

further. While compressed domain features are efficient to compute and use, the next logical

step would be to extend this framework to include features from raw video and investigate

other clustering criteria in the future. Moving forward, it will be an exciting next step

to extend this framework to a general system that organizes multimedia databases in a

content-based manner.

The estimated organizational hierarchy facilitates quick navigation of the database.

Using this hierarchy, we have shown how to select representative videos (exemplars) from a

dataset. Our method does not assume any a priori knowledge of the number of groups in

the database, so if the user decides that the number of clusters are different from a previous

hypothesis, it is easy to accommodate such a user request (without any re-computation) by

simply allowing the end-user to cut the estimated hierarchy at the appropriate level. Once

the organizational hierarchy is estimated, the database can be quickly indexed by assigning

a unique action tag to each cluster6. These derived action tags can then be combined with

other features (such as color, texture etc.) to build more complex queries or to develop

organizational principles for managing video databases. Using this unsupervised estimate

of the organizational hierarchy, one could potentially use active feedback to create a very

effective organization system that uses a human in the loop.

6User can easily label a cluster simply by identifying the cluster exemplar and propagating the
label downwards in the hierarchy.
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Future Directions

The joint pattern alignment algorithm (JPA) requires no correspondence solving stage,

since we attempt to align the entire template without choosing any landmark points. This

can lead to problems in the cases where the structure of interest is partially occluded. To

handle partial occlusions better, it might be worth considering a hybrid approach that com-

bines JPA and land-mark based methods (such as shape-context or geometric blur). The

convergence of the JPA algorithm can get very slow as the number of examples increases.

The convergence can also potentially slow down significantly as the dimensionality of the

data samples increases (due to the inherent increase in the number of associated transfor-

mation parameters). Efficient extensions to JPA, where increasing number of samples or

high-dimensionality of the signals can be handled easily, are worth investigating - since both

these issues arise in many practical applications. It is worth investigating if there are better

nonparametric entropy estimators for real-valued, multi-variate signals that could be used

in JPA routine. In our work on geometric alignment, we have only used affine space of

transformations. Extending JPA to nonrigid transformations can really improve the good-

ness of the alignment (albeit with an associated cost in increased number of parameters).

These improvements will have a clear impact on the goodness of final solution from the

alignment process.

We have shown how the JPA framework can be applied to a variety of applications
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such as high-throughput gene expression atlas generation (Chapter 3), denoising random-

field bias from magnetic resonance images (Chapter 4) and characterizing evoked neural

responses of subjects (Chapter 5). Our characterization of spatial gene expression in

Drosophila imaginal discs is not exhaustive (mainly due to resource constraints related

to data collection). Applying our pipeline to more genes could be potentially informative

on a number of levels. Further analysis of genes known to play a role in the patterning and

development of imaginal discs, and the quantification of the precise extent of spatial expres-

sion of these genes may provide a more detailed view of the roles of and interactions between

these important genes. Our semi-supervised high-throughput JPA framework could also be

applicable to construct high-throughput data driven atlases of spatial expression for other

biological or neurobiological substrates. In other biological datasets where shape prior is a

strong cue (such as Mouse atlases), a similar approach to ours can be taken to construct

data driven gene expression atlases. Another natural direction to extend our approach is

to apply this procedure to three-dimensional datasets such as image stacks from confocal

microscopy studies of in situ stained tissues (such as Drosophila embryos) to construct

data-driven gene expression atlases. In our MRI bias removal work, we approximated the

RF bias using sine-cosine bases. This was a convenient choice, if not physically appropri-

ate. One direction to extend our bias removal work would be in investigating bias fields

that are physically motivated based on the device physics. Using the nonparametrically

characterized ERP signals from single trial experiments, one could potentially build a clas-

sification scheme that could convert the cortical signals into discrete symbols (a task that

is of interest in the domain of brain-computer interfaces (BCI)). Our proposed approach to

estimating the ERP signal can be seen as a denoising step in the context of BCI. In terms of

further applications, learning compact representations of human actions (for example, us-

ing 4-dimensional space-time data from a tele-immersive set-up) would be very interesting.

It could potentially lay the ground work for annotating human actions in tele-immersive

environments.

To extend or improve our work on organizing large databases of action videos, we
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would like to investigate better kernels for estimating pair-wise action distances. It is also

of interest to investigate better statistical measures for choosing the best hierarchy in an

unsupervised manner. Once a large database of actions is organized using our approach,

one could combine the derived action tags with other features (color, texture etc.) for better

content-based query system for videos. Our approach relied on an action similarity measure

that is not scale-invariant by design. We would like to investigate scale and view invariant

methods for action similarity, and incorporate multimodal cues (such as signals from body

mounted sensors or audio sensors) into action analysis. Robust methods for action analysis

and organization of activity data could pave the way for interactive action-initiated camera

networks in future.
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